Skip to main content

Advertisement

Log in

Requirement of Glycogenolysis for Uptake of Increased Extracellular K+ in Astrocytes: Potential Implications for K+ Homeostasis and Glycogen Usage in Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The importance of astrocytic K+ uptake for extracellular K+ ([K+]e) clearance during neuronal stimulation or pathophysiological conditions is increasingly acknowledged. It occurs by preferential stimulation of the astrocytic Na+,K+-ATPase, which has higher Km and Vmax values than its neuronal counterpart, at more highly increased [K+]e with additional support of the cotransporter NKCC1. Triggered by a recent DiNuzzo et al. paper, we used administration of the glycogenolysis inhibitor DAB to primary cultures of mouse astrocytes to determine whether K+ uptake required K+-stimulated glycogenolysis. KCl was increased by either 5 mM (stimulating only the Na+,K+-ATPase) or 10 mM (stimulating both transporters) in glucose-containing saline media prepared to become iso-osmotic after the addition. DAB completely inhibited both uptakes, the Na+,K+-ATPase-mediated by preventing Na+ uptake for stimulation of its intracellular Na+-activated site, and the NKCC1-mediated uptake by inhibition of depolarization- and L-channel-mediated Ca2+ uptake. Drugs inhibiting the signaling pathways involved in either of these processes also abolished K+ uptake. Assuming similar in vivo characteristics, partly supported by literature data, K+-stimulated astrocytic K+ uptake must discontinue after normalization of extracellular K+. This will allow Kir1.4-mediated release and reuptake by the less powerful neuronal Na+,K+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Macaulay N, Zeuthen T (2012) Glial K+ clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–2309

    Google Scholar 

  2. Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522(Pt 3):427–442

    Article  PubMed  CAS  Google Scholar 

  3. Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25:349–365

    Article  PubMed  CAS  Google Scholar 

  4. Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36:291–300

    Article  PubMed  CAS  Google Scholar 

  5. Wang F, Smith NA, Xu Q et al (2012) Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci Signal 5:ra26

    Article  PubMed  Google Scholar 

  6. Wang F, Xu Q, Wang W et al (2012) Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc Natl Acad Sci USA 109:7911–7916

    Article  PubMed  CAS  Google Scholar 

  7. Grisar T, Franck G, Schoffeniels E (1980) Glial control of neuronal excitability in mammals: II. Enzymatic evidence: two molecular forms of the Na+, K+-ATPase in brain. Neurochem Int 2C:311–320

    Article  PubMed  CAS  Google Scholar 

  8. Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342

    Article  PubMed  CAS  Google Scholar 

  9. Henn FA, Haljamae H, Hamberger A (1972) Glial cell function: active control of extracellular K+ concentration. Brain Res 43:437–443

    Article  PubMed  CAS  Google Scholar 

  10. Walz W (1992) Role of Na/K/Cl cotransport in astrocytes. Can J Physiol Pharmacol 70(Suppl):S260–S262

    Article  PubMed  CAS  Google Scholar 

  11. Walz W, Hertz L (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metab 4:301–304

    Article  PubMed  CAS  Google Scholar 

  12. Dufour S, Dufour P, Chever O et al (2011) In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J Neurosci Methods 194:206–217

    Article  PubMed  CAS  Google Scholar 

  13. Bay V, Butt AM (2012) Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels. Glia 60:651–660

    Article  PubMed  Google Scholar 

  14. Dinuzzo M, Mangia S, Maraviglia B et al (2012) The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res 37:2423–2438

    Google Scholar 

  15. Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8:1922–1928

    PubMed  CAS  Google Scholar 

  16. Bernard C (1878) Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux, Tome 1. Edité par Albert Dastre. J.-B. Baillière et fils, Paris

    Google Scholar 

  17. Walz W, Hertz L (1982) Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J Neurochem 39:70–77

    Article  PubMed  CAS  Google Scholar 

  18. Sykova E (1992) K+ homeostasis in the ECS. In: Sykova E (ed) Ionic and volume changes in the microenvironment of nerve and receptor cells in progress in sensory physiology. Springer, Berlin, pp 7–26

    Chapter  Google Scholar 

  19. Epstein FH, Silva P (1985) Na-K-Cl cotransport in chloride-transporting epithelia. Ann N Y Acad Sci 456:187–197

    Article  PubMed  CAS  Google Scholar 

  20. Dawson DC (1987) Cellular mechanisms for K transport across epithelial cell layers. Semin Nephrol 7:185–192

    PubMed  CAS  Google Scholar 

  21. Kimelberg HK, Frangakis MV (1985) Furosemide- and bumetanide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res 361:125–134

    Article  PubMed  CAS  Google Scholar 

  22. Walz W, Hinks EC (1986) A transmembrane sodium cycle in astrocytes. Brain Res 368:226–232

    Article  PubMed  CAS  Google Scholar 

  23. Tas PW, Massa PT, Kress HG et al (1987) Characterization of an Na+/K+/Cl cotransport in primary cultures of rat astrocytes. Biochim Biophys Acta 903:411–416

    Article  PubMed  CAS  Google Scholar 

  24. Kanaka C, Ohno K, Okabe A et al (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1, 2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946

    Article  PubMed  CAS  Google Scholar 

  25. Mikawa S, Wang C, Shu F et al (2002) Developmental changes in KCC1, KCC2 and NKCC1 mRNAs in the rat cerebellum. Brain Res Dev Brain Res 136:93–100

    Article  PubMed  CAS  Google Scholar 

  26. Deisz RA, Lehmann TN, Horn P et al (2011) Components of neuronal chloride transport in rat and human neocortex. J Physiol 589:1317–1347

    Article  PubMed  CAS  Google Scholar 

  27. Zhang LL, Delpire E, Vardi N (2007) NKCC1 does not accumulate chloride in developing retinal neurons. J Neurophysiol 98:266–277

    Article  PubMed  CAS  Google Scholar 

  28. Pedersen SF, O’Donnell ME, Anderson SE et al (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    Article  PubMed  CAS  Google Scholar 

  29. Subbarao KV, Stolzenburg JU, Hertz L (1995) Pharmacological characteristics of potassium-induced, glycogenolysis in astrocytes. Neurosci Lett 196:45–48

    Article  PubMed  CAS  Google Scholar 

  30. Cai L, Du T, Song D et al (2011) Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypotonicity-induced swelling. Neuropathology 31:250–264

    Article  PubMed  Google Scholar 

  31. Hertz L, Bender AS, Woodbury DM et al (1989) Potassium-stimulated calcium uptake in astrocytes and its potent inhibition by nimodipine. J Neurosci Res 22:209–215

    Article  PubMed  CAS  Google Scholar 

  32. Peng L, Du T, Xu J et al (2012) Adrenergic and V1-ergic agonists/antagonists affecting recovery from brain trauma in the lund project act on astrocytes. Curr Signal Transduct Ther 7:43–55

    Article  CAS  Google Scholar 

  33. MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226:1345–1347

    Article  PubMed  CAS  Google Scholar 

  34. Duffy S, MacVicar BA (1994) Potassium-dependent calcium influx in acutely isolated hippocampal astrocytes. Neuroscience 61:51–61

    Article  PubMed  CAS  Google Scholar 

  35. Brown AM, Westenbroek RE, Catterall WA et al (2001) Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter. J Neurophysiol 85:900–911

    PubMed  CAS  Google Scholar 

  36. Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  Google Scholar 

  37. Barres BA, Koroshet WJ, Chun LL et al (1990) Ion channel expression by whiteatter glia: the type-1 astrocytes. Neuron 5:527–544

    Article  PubMed  CAS  Google Scholar 

  38. Lovatt D, Sonnewald U, Waagepetersen HS et al (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  PubMed  CAS  Google Scholar 

  39. Westenbroek RE, Bausch SB, Lin RC et al (1998) Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. J Neurosci 18:2321–2334

    PubMed  CAS  Google Scholar 

  40. Peng L (2004) Transactivation in astrocytes as a novel mechanism of neuroprotection. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 503–518

    Google Scholar 

  41. Mollenhauer HH, Morre DJ, Minnifield N (1992) Swelling response of golgi apparatus cisternae in cells treated with monensin is reduced by cell injury. Cell Biol Int Rep 16:217–220

    Article  PubMed  CAS  Google Scholar 

  42. Gautron S, Dos Santos G, Pinto-Henrique D et al (1992) The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression. Proc Natl Acad Sci USA 89:7272–7276

    Article  PubMed  CAS  Google Scholar 

  43. Black JA, Dib-Hajj S, Cohen S et al (1998) Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytes. Glia 23:200–208

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe E, Fujikawa A, Matsunaga H et al (2000) Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci 20:7743–7751

    PubMed  CAS  Google Scholar 

  45. Ogata N, Ohishi Y (2002) Molecular diversity of structure and function of the voltage-gated Na+ channels. Jpn J Pharmacol 88:365–377

    Article  PubMed  CAS  Google Scholar 

  46. Shimizu H, Watanabe E, Hiyama TY et al (2007) Glial Nax channels control lactate signaling to neurons for brain Na+ sensing. Neuron 54:59–72

    Article  PubMed  CAS  Google Scholar 

  47. Mobasheri A, Barrett-Jolley R, Shakibaei M et al (2005) Enigmatic roles of the epithelial sodium channel (ENaC) in articular chondrocytes and osteoblasts: mechanotransduction, sodium transport or extracellular sodium sensing? In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues. Academia, Moscow, pp 452–464

    Google Scholar 

  48. Reinhard L, Tidow H, Clausen MJ et al (2012) Na+, K+-ATPase as a docking station: protein–protein complexes of the Na+, K+-ATPase. Cell Mol Life Sci. doi:10.1007/s00018-012-1039-9

  49. Xue Z, Li B, Gu L et al (2010) Increased Na, K-ATPase alpha2 isoform gene expression by ammonia in astrocytes and in brain in vivo. Neurochem Int 57:395–403

    Article  PubMed  CAS  Google Scholar 

  50. Zhang L, Zhang Z, Guo H et al (2008) Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation. Fundam Clin Pharmacol 22:615–621

    Article  PubMed  CAS  Google Scholar 

  51. Juurlink BHJ, Hertz L (1992) Astrocytes. In: Boulton AA, Baker GB, Walz W (eds) Neuromethods in cell cultures. Humana Clifton, New York, pp 269–321; Internet availability in Springer Protocols, Neuroscience

  52. Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310

    Article  PubMed  CAS  Google Scholar 

  53. Li B, Du T, Li H et al (2008) Signalling pathways for transactivation by dexmedetomidine of epidermal growth factor receptors in astrocytes and its paracrine effect on neurons. Br J Pharmacol 154:191–203

    Article  PubMed  CAS  Google Scholar 

  54. Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: Lajtha A (ed) Handbook of neurochemistry. Plenum, New York, pp 603–661

    Google Scholar 

  55. Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15

    Article  CAS  Google Scholar 

  56. Lange SC, Bak LK, Waagepetersen HS et al (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588

    Article  PubMed  CAS  Google Scholar 

  57. Li B, Dong L, Wang B et al (2012) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37:2380–2495

    Google Scholar 

  58. Li B, Hertz L, Peng L (2012b) Aralar mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int 61:1325–1332

    Google Scholar 

  59. Song D, Li B, Yan EZ et al (2012) Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions. Neurochem Res 37:2524–2540

    Article  PubMed  CAS  Google Scholar 

  60. Deshmukh HS, Case LM, Wesselkamper SC et al (2005) Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. Am J Respir Crit Care Med 171:305–314

    Article  PubMed  Google Scholar 

  61. Laskay G, Varhelyi T, Dale RE et al (1995) Role of interleukin-3 in the regulation of intracellular K+ homeostasis in cultured murine hematopoietic cells. Biochem Biophys Res Commun 214:348–353

    Article  PubMed  CAS  Google Scholar 

  62. Andersson B, Janson V, Behnam-Motlagh P et al (2006) Induction of apoptosis by intracellular potassium ion depletion: using the fluorescent dye PBFI in a 96-well plate method in cultured lung cancer cells. Toxicol In Vitro 20:986–994

    Article  PubMed  CAS  Google Scholar 

  63. Yates SL, Fluhler EN, Lippiello PM (1992) Advances in the use of the fluorescent probe fura-2 for the estimation of intrasynaptosomal calcium. J Neurosci Res 32:255–260

    Article  PubMed  CAS  Google Scholar 

  64. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  65. Sickmann HM, Schousboe A, Fosgerau K et al (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30:1295–1304

    Article  PubMed  CAS  Google Scholar 

  66. Gibbs M, Lloyd H, Santa T et al (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333

    Article  PubMed  CAS  Google Scholar 

  67. Obel LF, Muller MS, Walls AB et al (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenergetics 4:3

    PubMed  CAS  Google Scholar 

  68. Ma D, Wang J, Zhao Y et al (2012) Inhibition of glycogen phosphorylation induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells. Pancreas 41:397–408

    Article  PubMed  CAS  Google Scholar 

  69. Sickmann HM, Waagepetersen HS, Schousboe A et al (2012) Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem Int 60:267–275

    Article  PubMed  CAS  Google Scholar 

  70. Obel LF, Andersen KM, Bar LK et al (2012) Effects of adrenergic agents on intracellular Ca2+ homeostasis and metabolism of glucose in astrocytes with an emphasis on pyruvate carboxylation, oxidative decarboxylation and recycling: implications for glutamate neurotransmission and excitotoxicity. Neurotox Res 21:405–417

    Article  PubMed  CAS  Google Scholar 

  71. Kaufman E, Driscoll B (1992) Carbon dioxide fixation in neuronal and astroglial cells in culture. J Neurochem 58:258–262

    Article  PubMed  CAS  Google Scholar 

  72. Öz G, Tesfaye N, Kumar A et al (2012) Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab 32:256–263

    Article  PubMed  Google Scholar 

  73. Hertz L (2011) Astrocytic energy metabolism and glutamate formation—relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging 29:1319–1329

    Article  PubMed  CAS  Google Scholar 

  74. Zhao Z, Hertz L, Code WE (1996) Effects of benzodiazepines on potassium-induced increase in free cytosolic calcium concentration in astrocytes: interactions with nifedipine and the peripheral-type benzodiazepine antagonist PK 11195. Can J Physiol Pharmacol 74:273–277

    Article  PubMed  CAS  Google Scholar 

  75. Ozawa E (2011) Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction. Proc Jpn Acad Ser B Phys Biol Sci 87:486–508

    Article  PubMed  CAS  Google Scholar 

  76. Scemes E, Spray DC (2012) Extracellular K+ and astrocyte signaling via connexin and pannexin channels. Neurochem Res 37:2310–2316

    Article  PubMed  CAS  Google Scholar 

  77. Magistretti PJ, Morrison JH, Shoemaker WJ et al (1983) Effect of 6-hydroxydopamine lesions on norepinephrine-induced [3H]glycogen hydrolysis in mouse cortical slices. Brain Res 261:159–166

    Article  PubMed  CAS  Google Scholar 

  78. Cambray-Deakin M, Pearce B, Morrow C et al (1988) Effects of neurotransmitters on astrocyte glycogen stores in vitro. J Neurochem 51:1852–1857

    Article  PubMed  CAS  Google Scholar 

  79. Subbarao KV, Hertz L (1990) Noradrenaline induced stimulation of oxidative metabolism in astrocytes but not in neurons in primary cultures. Brain Res 527:346–349

    Article  PubMed  CAS  Google Scholar 

  80. Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222

    Article  PubMed  Google Scholar 

  81. Hertz L, Gibbs ME (2009) What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism. J Neurochem 109(Suppl 1):10–16

    Article  PubMed  CAS  Google Scholar 

  82. Suzuki A, Stern SA, Bozdaqi O et al (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  PubMed  CAS  Google Scholar 

  83. Gibbs ME, Hutchinson DS (2012) Rapid turnover of glycogen in memory formation. Neurochem Res 37:2456–2463

    Article  PubMed  CAS  Google Scholar 

  84. Ito M, Spicer SS, Schulte BA (1994) Histochemical detection of glycogen and glycoconjugates in the inner ear with modified concanavalin A-horseradish peroxidase procedures. Histochem J 26:437–446

    Article  PubMed  CAS  Google Scholar 

  85. Tseng YC, Huang CJ, Chang JC et al (2007) Glycogen phosophorylase in glycogen-rich cells is involved in the energy supply for ion regulation in fish gill epithelia. Am J Physiol Requl Inteqr Comp Physiol 293:R482–R491

    Article  CAS  Google Scholar 

  86. Tipsmark CK, Madsen SS, Borski RJ (2004) Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J Exp Zool A Comp Exp Biol 301:979–991

    Article  PubMed  Google Scholar 

  87. Chu HQ, Huang XW, Xiong H et al (2006) Role of ion channel Na-K-2Cl and alpha2 Na, K-ATPase in cochlear potassium cycling and auditory function. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 41:692–697

    PubMed  Google Scholar 

  88. Kajimura S, Hirano T, Moriyama S et al (2004) Changes in plasma concentrations of immunoreactive ouabain in the tilapia in response to changing salinity: is ouabain a hormone in fish? Gen Comp Endocrinol 135:90–99

    Article  PubMed  CAS  Google Scholar 

  89. Larre I, Lazaro A, Contreras RG, Balda MS et al (2010) Ouabain modulates epithelial cell tight junction. Proc Natl Acad Sci USA 107:11387–11392

    Article  PubMed  CAS  Google Scholar 

  90. Forshammar J, Block L, Lundborg C et al (2011) Naloxone and ouabain in ultralow concentrations restore Na+/K+-ATPase and cytoskeleton in lipopolysaccharide-treated astrocytes. J Biol Chem 286:31586–31597

    Article  PubMed  CAS  Google Scholar 

  91. Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70(Suppl):S138–S144

    Article  PubMed  CAS  Google Scholar 

  92. Carmignoto G, Pasti L, Pozzan T (1998) On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J Neurosci 18:4637–4645

    PubMed  CAS  Google Scholar 

  93. Choi HB, Gordon GR, Zhou N et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors of DiNuzzo et al. [14] are cordially thanked for their contemplative suggestion that glycogenolysis may be involved in astrocytic K+ uptake, without which this study would not have been undertaken. Our study was supported by Grant No. 31171036 to L. P. from the National Natural Science Foundation of China.

Conflict of interest

Nothing to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Additional information

Junnan Xu and Dan Song contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Song, D., Xue, Z. et al. Requirement of Glycogenolysis for Uptake of Increased Extracellular K+ in Astrocytes: Potential Implications for K+ Homeostasis and Glycogen Usage in Brain. Neurochem Res 38, 472–485 (2013). https://doi.org/10.1007/s11064-012-0938-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0938-3

Keywords

Navigation