Skip to main content

Advertisement

Log in

Intracellular Signaling MAPK Pathway After Cerebral Ischemia–Reperfusion Injury

Neurochemical Research Aims and scope Submit manuscript

Abstract

The MAPK/ERK/p38 are signal transduction pathways that couple intracellular responses to the external stimuli. Contrary to ERK protein which is part of the survival route, presence of p38 could have an impact on cell injury. Tolerance induced by ischemic preconditioning (IPC) is a phenomenon of tissue adaptation, which results in increased tolerance to lethal ischemia–reperfusion injury (IRI). Paper describes changes in MAPK protein pathways after brain IPC. Ischemia was induced by 4-vessels occlusion and rats were preconditioned by sub-lethal ischemia. Western blot and immunohistochemistry identified ERK/p38 proteins in injured areas. The highest level of the pERK was detected at 24 h in IPC groups. A contrary pattern of MAPK/p38 activation was observed in this group, where the lowest level of p38 was displayed at 24 h after ischemia. This suggests that the MAPK signal transduction might have a potential role in tissues response subjected to IRI and in the phenomenon of tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Lehotsky J, Burda J, Danielisova V, Gottlieb M, Kaplan P, Saniova B (2009) Ischemic tolerance: the mechanisms of neuroprotective strategy. Anat Rec 292:2002–2012

    Article  Google Scholar 

  2. Lehotsky J, Racay P, Pavlikova M, Tatarková Z, Urban P, Chomova M, Kovalska M, Kaplan P (2009) Cross-talk of intracellular calcium stores in the response to neuronal ischemia and ischemic tolerance. Gen Physiol Biophys 28:104–113

    Google Scholar 

  3. Liu XQ, Sheng R, Qin ZH (2009) The neuroprotective mechanism of brain ischemic preconditioning. Acta Pharmacol Sin 30:1071–1080

    Article  PubMed  CAS  Google Scholar 

  4. Pavlikova M, Tatarkova Z, Sivonova M, Kaplan P, Krizanova O, Lehotsky J (2009) Alterations induced by ischemic preconditioning on secretory pathways Ca2+-ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats. Cell Mol Neurobiol 29:909–916

    Article  PubMed  CAS  Google Scholar 

  5. Pignataro G, Scorziello A, Di Renzo G, Annunziato L (2009) Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J 276:46–57

    Article  PubMed  CAS  Google Scholar 

  6. Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A (2008) Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Cardiovasc Res 78:108–115

    Article  PubMed  CAS  Google Scholar 

  7. Lutz J, Thümel K, Heemann U (2010) Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm 7:27

    Article  Google Scholar 

  8. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129

    Article  PubMed  CAS  Google Scholar 

  9. Riedemann NC, Ward PA (2003) Complement in ischemia reperfusion injury. Am J Pathol 162:363–367

    Article  PubMed  Google Scholar 

  10. Pavlikova M, Kovalska M, Tatarkova Z, Sivonova-Kmetova M, Kaplan P, Lehotsky J (2011) Response of secretory pathways Ca(2+) ATPase gene expression to hyperhomocysteinemia and/or ischemic preconditioning in rat cerebral cortex and hippocampus. Gen Physiol Biophys 30:S61–S69

    Article  PubMed  Google Scholar 

  11. Urban P, Pavlikova M, Sivonova M, Kaplan P, Tatarkova Z, Kaminska B, Lehotsky J (2009) Molecular analysis of endoplasmic reticulum stress response after global forebrain ischemia/reperfusion in rats: Effect of neuroprotectant simvastatin. Cell Mol Neurobiol 29:181–192

    Article  PubMed  CAS  Google Scholar 

  12. Lehotsky J, Urban P, Pavlikova M, Tatarkova Z, Kaminska B, Kaplan P (2009) Molecular mechanisms leading to neuroprotection/ischemic tolerance. Effect of preconditioning on the stress reaction of endoplasmic reticulum. Cell Mol Neurobiol 29:917–925

    Article  PubMed  CAS  Google Scholar 

  13. Pozo Devoto V, Giusti MS, Chavez JC, Fiszer de Plazas S (2008) Hypoxia-induced apoptotic cell death is prevented by oestradiol via oestrogen receptors in the developing central nervous system. J Neuroendocrinol 20:375–380

    Article  PubMed  CAS  Google Scholar 

  14. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  PubMed  CAS  Google Scholar 

  15. Irving EA, Barone FC, Reitha AD, Hadingham SJ, Pardone AA (2000) Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Mol Brain Res 77:65–75

    Article  PubMed  CAS  Google Scholar 

  16. Lee CH, Yoo KY, Park OK, Choi JH, Kang IJ, Bae E, Kim SK, Hwang IK, Won MH (2010) Phosphorylated extracellular signal-regulated kinase 1/2 immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. Mol Cells 29:373–378

    Article  PubMed  CAS  Google Scholar 

  17. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  CAS  Google Scholar 

  18. Lu Q, Rau TF, Harris V, Johnson M, Poulsen DJ, Black SM (2011) Increased p38 mitogen-activated protein kinase signaling is involved in the oxidative stress associated with oxygen and glucose deprivation in neonatal hippocampal slice cultures. Eur J Neurosci 34:1093–1101

    Article  PubMed  Google Scholar 

  19. Shen CP, Tsimberg Y, Salvadore C, Meller E (2004) Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions. BMC Neurosci 5:36

    Article  PubMed  Google Scholar 

  20. Melania A, Gianfriddo M, Vannucchi MG, Cipriania S, Baraldi PG, Giovannini MG, Pedata F (2006) The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia. Brain Res 1073–1074:470–480

    Article  Google Scholar 

  21. Yang J, Yu Y, Duerksen-Hughes PJ (2003) Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res 543:31–58

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki T, Okumura-Noji K, Nishida E (1995) ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neurosci Res 22:277–285

    Article  PubMed  CAS  Google Scholar 

  23. Carletti R, Tacconi S, Bettini E, Ferraguiti F (1995) Stress activated protein kinases, a novel family of mitogen-activated protein kinases are heterogeneously expressed in the adult rat brain and differentially disturbed extracellular-signal-regulated protein kinases. Neuroscience 69:1103–1110

    Article  PubMed  CAS  Google Scholar 

  24. Li DY, Tao L, Liu H, Christopher TA, Lopez BL, Ma XL (2006) Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitricoxide after myocardial ischemia and reperfusion. Apoptosis 11:923–930

    Article  PubMed  CAS  Google Scholar 

  25. Ostrakhovitch EA, Cherian MG (2005) Inhibition of extracellular signal regulated kinase (ERK) leads to apoptosis inducing factor (AIF) mediated apoptosis in epithelial breast cancer cells: the lack of effect of ERK in p53 mediated copper induced apoptosis. J Cell Biochem 95:1120–1134

    Article  PubMed  CAS  Google Scholar 

  26. Stoica BA, Movsesyan VA, Knoblach SM, Faden AI (2005) Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol Cell Neurosci 29:355–371

    Article  PubMed  CAS  Google Scholar 

  27. Chen KD, Chen LY, Huang HL, Lieu CH, Chang YN, Chang MDT, Lai YK (1998) Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells. J Biol Chem 273:749–755

    Article  PubMed  CAS  Google Scholar 

  28. Wang YX, Xu XY, Su WL, Wang Q, Zhu WX, Chen F, Jin G, Liu YJ, Li YD, Sun YP, Gao WC, Ruan CP (2010) Activation and clinical significance of p38 MAPK signaling pathway in patients with severe trauma. J Surg Res 161:119–125

    Article  PubMed  CAS  Google Scholar 

  29. Lehotsky J, Murin R, Strapkova A, Uhrikova A, Tatarkova Z, Kaplan P (2004) Time course of ischemia/reperfusion-induced oxidative modification of neural proteins in rat forebrain. Gen Physiol Biophys 23:401–415

    PubMed  CAS  Google Scholar 

  30. Sivonova M, Kaplan P, Durackova Z, Dobrota D, Drgova A, Tatarkova Z, Pavlikova M, Halasova E, Lehotsky J (2008) Time course of peripheral oxidative stress as consequence of global ischaemic brain injury in rats. Cell Mol Neurobiol 28:431–441

    Article  PubMed  CAS  Google Scholar 

  31. Tatarkova Z, Engler I, Calkovska A, Mokra D, Dgrova A, Hodas P, Lehotsky J, Dobrota D, Kaplan P (2011) Effect of long-term normobaric hypoxia on oxidative stress in mitochondria of the guinea pig brain. Neurochem Res 36:1475–1481

    Article  PubMed  CAS  Google Scholar 

  32. Cao Q, Qian M, Wang XF, Wang B, Wu HW, Zhu XJ, Wang YW, Guo J (2011) Negative feedback regulation of Raf/MEK/ERK cascade after sublethal cerebra ischemia in the rat hippocampus. Neurochem Res 36:153–162

    Article  PubMed  CAS  Google Scholar 

  33. Bu X, Huang P, Qi Z, Zhang N, Han S, Fang L, Li J (2007) Cell type-specific activation of p38 MAPK in the brain regions of hypoxic preconditioned mice. Neurochem Int 51:459–466

    Article  PubMed  CAS  Google Scholar 

  34. Brust TB, Cayabyab FS, Zhou N, MacVicar BA (2006) p38 Mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat hippocampus. J Neurosci 26:12427–12438

    Article  PubMed  CAS  Google Scholar 

  35. Campos-Gonzalez R, Kindy MS (1992) Tyrosine phosphorylation of microtubule-associated protein kinase after transient ischemia in the gerbil brain. J Neurochem 59:1955–1958

    Article  PubMed  CAS  Google Scholar 

  36. Hu BR, Wieloch T (1994) Tyrosine phosphorylation and activation of mitogen-activated protein kinase in the rat brain following transient cerebral ischemia. J Neurochem 62:1357–1367

    Article  PubMed  CAS  Google Scholar 

  37. Wang Z, Chen X, Zhou L, Wu D, Che X, Yang G (2003) Effects of extracellular signal -regulated kinase (ERK) on focal cerebral ischemia. Chin Med J 116:1497–1503

    PubMed  CAS  Google Scholar 

  38. Yan XB, Hou HL, Wu LM, Liu J, Zhou JN (2007) Lithium regulates hippocampal neurogenesis by ERK pathway and facilitates recovery of spatial learning and memory in rats after transient global cerebral ischemia. Neuropharmacology 53:487–495

    Article  PubMed  CAS  Google Scholar 

  39. Lennmyr F, Karlsson S, Gerwins P, Ata KA, Terent A (2002) Activation of mitogen-activated protein kinases in experimental cerebral ischemia. Acta Neurol Scand 106:333–340

    Article  PubMed  CAS  Google Scholar 

  40. Veeranna GJ, Shetty KT, Takahashi M, Grant P, Pant HC (2000) Cdk5 and MAPK are associated with complexes of cytoskeletal proteins in rat brain. Mol Brain Res 76:229–236

    Article  PubMed  CAS  Google Scholar 

  41. Gu Z, Jiang Q, Zhang G (2001) Extracellular signal-regulated kinase ½ activation in hippocampus after cerebral ischemia may not interfere with postischemic cell death. Brain Res 901:79–84

    Article  PubMed  CAS  Google Scholar 

  42. Zhang QG, Wang RM, Han D, Yang LC, Li J, Brann DW (2009) Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk. Neurosci Res 63:205–212

    Article  PubMed  CAS  Google Scholar 

  43. Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C, Rogers R, Curry A, Jimenez D, Ding Y (2010) Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 166:1091–1100

    Article  PubMed  CAS  Google Scholar 

  44. Wang X, Wang H, Xu L, Rozanski DJ, Sugawara T, Chan PH, Trzaskos JM, Feuerstein GZ (2003) Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. J Pharmacol Exp Ther 304:172–178

    Article  PubMed  CAS  Google Scholar 

  45. Wood CD, Thornton TM, Sabio G, Davis RA, Rincon M (2009) Nuclear localization of p38 MAPK in response to DNA damage. Int J Biol Sci 5:428–437

    Article  PubMed  CAS  Google Scholar 

  46. Paxinos G, Watson C (eds.) (2006) The Rat Brain in Stereotaxic Coordinates. Academic Press, London. http://www.scribd.com/doc/22822097/Rat-Brain-Atlas

Download references

Acknowledgments

This study was supported by Grants VEGA 213/12, from the Ministry of Education of the Slovak Republic, UK-55-15/07 from Ministry of Health of the Slovak Republic, VVCE 0064-07 and UK/10/2010 and by project ‘‘Identification of novel markers in diagnostic panel of neurological diseases‘‘code: 26220220114, co-financed from EU sources and European Regional Development Fund. The authors are grateful to Mrs. Zdenka Cetlová and Ing. Ján Fillo for their excellent help with animals. The authors are also thankful to Mrs. Monika Letrichová, Margatéta Kondeková and Agáta Rešetárová for their help with immunohistochemical analysis of brain tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Lehotsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalska, M., Kovalska, L., Pavlikova, M. et al. Intracellular Signaling MAPK Pathway After Cerebral Ischemia–Reperfusion Injury. Neurochem Res 37, 1568–1577 (2012). https://doi.org/10.1007/s11064-012-0752-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0752-y

Keywords

Navigation