Skip to main content

Advertisement

Log in

Modulation by Clamping: Kv4 and KChIP Interactions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The rapidly inactivating (A-type) potassium channels regulate membrane excitability that defines the fundamental mechanism of neuronal functions such as pain signaling. Cytosolic Kv channel-interacting proteins KChIPs that belong to neuronal calcium sensor (NCS) family of calcium binding EF-hand proteins co-assemble with Kv4 (Shal) α subunits to form a native complex that encodes major components of neuronal somatodendritic A-type K+ current, ISA, in neurons and transient outward current, ITO, in cardiac myocytes. The specific binding of auxiliary KChIPs to the Kv4 N-terminus results in modulation of gating properties, surface expression and subunit assembly of Kv4 channels. Here, I attempt to emphasize the interaction between KChIPs and Kv4 based on recent progress made in understanding the structure complex in which a single KChIP1 molecule laterally clamps two neighboring Kv4.3 N-termini in a 4:4 manner. Greater insights into molecular mechanism between KChIPs and Kv4 interaction may provide therapeutic potentials of designing compounds aimed at disrupting the protein–protein interaction for treatment of membrane excitability-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

KChIPs:

Kv channel-interacting proteins

NCS:

Neuronal calcium sensor

Kv:

Voltage-gated potassium channels

T1 domain:

Tetramerization domain

DREAM:

Downstream regulatory element antagonist modulator

Kv4.3N:

Kv4.3 N-terminus

References

  1. Abbott GW, Goldstein SA (1998) A superfamily of small potassium channel subunits: form and function of the MinK-related peptides (MiRPs). Q Rev Biophys 31:357–398

    Article  PubMed  CAS  Google Scholar 

  2. Trimmer JS (1998) Regulation of ion channel expression by cytoplasmic subunits. Curr Opin Neurobiol 8:370–374

    Article  PubMed  CAS  Google Scholar 

  3. Shibata R, Misonou H, Campomanes CR, Anderson AE, Schrader LA, Doliveira LC, Carroll KI, Sweatt JD, Rhodes KJ, Trimmer JS (2003) A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels. J Biol Chem 278:36445–36454

    Article  PubMed  CAS  Google Scholar 

  4. Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84:803–833

    Article  PubMed  CAS  Google Scholar 

  5. Rhodes KJ, Carroll KI, Sung MA, Doliveira LC, Monaghan MM, Burke SL, Strassle BW, Buchwalder L, Menegola M, Cao J, An WF, Trimmer JS (2004) KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. J Neurosci 24:7903–7915

    Article  PubMed  CAS  Google Scholar 

  6. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556

    Article  PubMed  CAS  Google Scholar 

  7. Kuo HC, Cheng CF, Clark RB, Lin JJ, Lin JL, Hoshijima M, Nguyen-Tran VT, Gu Y, Ikeda Y, Chu PH, Ross J, Giles WR, Chien KR (2001) A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell 107:801–813

    Article  PubMed  CAS  Google Scholar 

  8. Holmqvist MH, Cao J, Hernandez-Pineda R, Jacobson MD, Carroll KI, Sung MA, Betty M, Ge P, Gilbride KJ, Brown ME, Jurman ME, Lawson D, Silos-Santiago I, Xie Y, Covarrubias M, Rhodes KJ, Distefano PS, An WF (2002) Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. Proc Natl Acad Sci USA 99:1035–1040

    Article  PubMed  CAS  Google Scholar 

  9. Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz de Miera E, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37:449–461

    Article  PubMed  CAS  Google Scholar 

  10. Kunjilwar K, Strang C, DeRubeis D, Pfaffinger PJ (2004) KChIP3 rescues the functional expression of Shal channel tetramerization mutants. J Biol Chem 279:54542–54551

    Article  PubMed  CAS  Google Scholar 

  11. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    Article  PubMed  CAS  Google Scholar 

  12. Kamb A, Iverson LE, Tanouye MA (1987) Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell 50:405–413

    Article  PubMed  CAS  Google Scholar 

  13. Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248:599–603

    Article  PubMed  CAS  Google Scholar 

  14. Tempel BL, Jan YN, Jan LY (1988) Cloning of a probable potassium channel gene from mouse brain. Nature 332:837–839

    Article  PubMed  CAS  Google Scholar 

  15. Dolly JO, Parcej DN (1996) Molecular properties of voltage-gated K+ channels. J Bioenerg Biomembr 28:231–253

    Article  PubMed  CAS  Google Scholar 

  16. Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213:21–30

    PubMed  CAS  Google Scholar 

  17. Jahng AW, Strang C, Kaiser D, Pollard T, Pfaffinger P, Choe S (2002) Zinc mediates assembly of the T1 domain of the voltage-gated K channel 4.2. J Biol Chem 277:47885–47890

    Article  PubMed  CAS  Google Scholar 

  18. Scannevin RH, Wang K, Jow F, Megules J, Kopsco DC, Edris W, Carroll KC, Lu Q, Xu W, Xu Z, Katz AH, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby MR, Chanda P, Rhodes KJ (2004) Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Neuron 41:587–598

    Article  PubMed  CAS  Google Scholar 

  19. Li M, Jan YN, Jan LY (1992) Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257:1225–1230

    Article  PubMed  CAS  Google Scholar 

  20. Bixby KA, Nanao MH, Shen NV, Kreusch A, Bellamy H, Pfaffinger PJ, Choe S (1999) Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Biol 6:38–43

    Article  PubMed  CAS  Google Scholar 

  21. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538

    Article  PubMed  CAS  Google Scholar 

  22. Zagotta WN, Hoshi T, Aldrich RW (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250:568–571

    Article  PubMed  CAS  Google Scholar 

  23. Hoshi T, Zagotta WN, Aldrich RW (1991) Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7:547–556

    Article  PubMed  CAS  Google Scholar 

  24. Yellen G, Sodickson D, Chen TY, Jurman ME (1994) An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J 66:1068–1075

    Article  PubMed  CAS  Google Scholar 

  25. Gebauer M, Isbrandt D, Sauter K, Callsen B, Nolting A, Pongs O, Bahring R (2004) N-type inactivation features of Kv4.2 channel gating. Biophys J 86:210–223

    PubMed  CAS  Google Scholar 

  26. Wang H, Yan Y, Liu Q, Huang Y, Shen Y, Chen L, Chen Y, Yang Q, Hao Q, Wang K, Chai J (2007) Structural basis for modulation of Kv4K+ channels by auxiliary KChIP subunits. Nat Neurosci 10:32–39

    Article  PubMed  CAS  Google Scholar 

  27. Morohashi Y, Hatano N, Ohya S, Takikawa R, Watabiki T, Takasugi N, Imaizumi Y, Tomita T, Iwatsubo T (2002) Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J Biol Chem 277:14965–14975

    Article  PubMed  CAS  Google Scholar 

  28. Spreafico F, Barski JJ, Farina C, Meyer M (2001) Mouse DREAM/calsenilin/KChIP3: gene structure, coding potential, and expression. Mol Cell Neurosci 17:1–16

    Article  PubMed  CAS  Google Scholar 

  29. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR (1999) DREAM is a Ca2+-regulated transcriptional repressor. Nature 398:80–84

    Article  PubMed  CAS  Google Scholar 

  30. Beck EJ, Bowlby M, An WF, Rhodes KJ, Covarrubias M (2002) Remodelling inactivation gating of Kv4 channels by KChIP1, a small-molecular-weight calcium-binding protein. J Physiol 538:691–706

    Article  PubMed  CAS  Google Scholar 

  31. Bahring R, Dannenberg J, Peters HC, Leicher T, Pongs O, Isbrandt D (2001) Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating. J Biol Chem 276:23888–23894

    Article  PubMed  CAS  Google Scholar 

  32. Zhou W, Qian Y, Kunjilwar K, Pfaffinger PJ, Choe S (2004) Structural insights into the functional interaction of KChIP1 with Shal-type K(+) channels. Neuron 41:573–586

    Article  PubMed  CAS  Google Scholar 

  33. Kim LA, Furst J, Gutierrez D, Butler MH, Xu S, Goldstein SA, Grigorieff N (2004) Three-dimensional structure of I(to); Kv4.2-KChIP2 ion channels by electron microscopy at 21 Angstrom resolution. Neuron 41:513–519

    Article  PubMed  CAS  Google Scholar 

  34. Gulbis JM, Zhou M, Mann S, MacKinnon R (2000) Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science 289:123–127

    Article  PubMed  CAS  Google Scholar 

  35. Orlova EV, Papakosta M, Booy FP, van Heel M, Dolly JO (2003) Voltage-gated K+ channel from mammalian brain: 3D structure at 18A of the complete (alpha) 4(beta) 4 complex. J Mol Biol 326:1005–1012

    Article  PubMed  CAS  Google Scholar 

  36. Pioletti M, Findeisen F, Hura GL, Minor DL Jr (2006) Three-dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer. Nat Struct Mol Biol 13:987–995

    Article  PubMed  CAS  Google Scholar 

  37. Bowlby MR, Chanda P, Edris W, Hinson J, Jow F, Katz AH, Kennedy J, Krishnamurthy G, Pitts K, Ryan K, Zhang H, Greenblatt L (2005) Identification and characterization of small molecule modulators of KChIP/Kv4 function. Bioorg Med Chem 13:6112–6119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank the lab members for their contributions to the work and Mr. Ping Liang for assistance in Figure 1. I am also very grateful to Dr Mike Stein for his comments on the manuscript. The preparation of this manuscript was supported by research grants from the National Science Foundation of China, 30630017 and the Ministry of Science Technology of China, 2006AA02Z183 and 2007CB512100 to KWW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeWei Wang.

Additional information

Special issue article in honor of Dr. Ji-Sheng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K. Modulation by Clamping: Kv4 and KChIP Interactions. Neurochem Res 33, 1964–1969 (2008). https://doi.org/10.1007/s11064-008-9705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9705-x

Keywords

Navigation