Skip to main content

Advertisement

Log in

Activation of the Human FPRL-1 Receptor Promotes Ca2+ Mobilization in U87 Astrocytoma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The human formyl peptide receptor like 1 (FPRL-1) is a variant of the Gi-coupled formyl-peptide receptor. Functional FPRL-1 is endogenously expressed in the U87 astrocytoma cell line and there is accumulating evidence to suggest that FPRL-1 may be involved in neuroinflammation associated with the pathogenesis of Alzheimer’s disease. In this study, we examined the ability of FPRL-1 to mobilize intracellular Ca2+ in U87 astrocytoma cells, as well as in Chinese hamster ovary (CHO) cells stably expressing FPRL-1. We showed that Trp–Lys–Tyr–Met–Val–Met–NH2 (WKYMVM), a specific agonist for FPRL-1, stimulated Ca2+ influx in both U87 and FPRL-1/CHO cells. These effects can be inhibited by the FPRL-1 selective antagonist, WRW4. Involvement of Gi proteins was demonstrated with the use of pertussis toxin, while inhibitors of store-operated channels (SOC) including 1-[2-(4-methoxyphenyl)]-2-[3-(4-methpxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride (SKF96365) and 2-aminoethoxydiphenyl borate (2-APB) were found to abolish the WKYMVM-induced Ca2+ increase. However, intracellular Ca2+ mobilization in both cell lines were unaffected by the phospholipase Cβ inhibitor U73122 or selective ryanodine receptor inhibitors. Our data demonstrated that activation of Gi-coupled FPRL-1 can lead to Ca2+ influx possibly via SOCs in U87 and FPRL-1/CHO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-APB:

2-Aminoethoxydiphenyl borate

cADPR:

Cyclic ADP-ribose

fMLP:

N-Formyl peptide

FPR:

Formyl peptide receptor

FPRL-1:

Formyl peptide receptor like 1

PTX:

Pertussis toxin

SAA:

Serum amyloid A

SOC:

Store-operated channel

References

  1. Murphy PM, Ozcelik T, Kenney RT, et al (1992) A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J Biol Chem 267:7637–7643

    PubMed  CAS  Google Scholar 

  2. Ye RD, Cavanagh SL, Quehenberger O, et al (1992) Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun 184:582–589

    Article  PubMed  CAS  Google Scholar 

  3. Le Y, Murphy PM, Wang JM (2002) Formyl-peptide receptors revisited. Trends Immunol 23:541–548

    Article  PubMed  CAS  Google Scholar 

  4. Christophe T, Karlsson A, Dugave C, et al (2001) The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH2 specifically activates neutrophils through FPRL1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPRL2. J Biol Chem 276:21585–21593

    Article  PubMed  CAS  Google Scholar 

  5. De Y, Chen Q, Schmidt AP, et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Google Scholar 

  6. Fiore S, Maddox JF, Perez HD, et al (1994) Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med 180:253–260

    Article  PubMed  CAS  Google Scholar 

  7. Le Y, Gong W, Tiffany HL, et al (2001) Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 21:RC123

    PubMed  CAS  Google Scholar 

  8. Su SB, Gong W, Gao JL, et al (1999) A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med 189:395–402

    Article  PubMed  CAS  Google Scholar 

  9. Le Y, Yazawa H, Gong W, et al (2001) The neurotoxic prion peptide fragment PrP(106–126) is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J Immunol 166:1448–1451

    PubMed  CAS  Google Scholar 

  10. Hu JY, Le Y, Gong W, et al (2001) Synthetic peptide MMK-1 is a highly specific chemotactic agonist for leukocyte FPRL1. J Leukoc Biol 70:155–161

    PubMed  CAS  Google Scholar 

  11. He R, Sang H, Ye RD (2003) Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood 101:1572–1581

    Article  PubMed  CAS  Google Scholar 

  12. Badolato R, Johnston JA, Wang JM, et al (1995) Serum amyloid A induces calcium mobilization and chemotaxis of human monocytes by activating a pertussis toxin-sensitive signaling pathway. J Immunol 155:4004–4010

    PubMed  CAS  Google Scholar 

  13. Bylund J, Karlsson A, Boulay F, et al (2002) Lipopolysaccharide-induced granule mobilization and priming of the neutrophil response to Helicobacter pylori peptide Hp(2–20), which activates formyl peptide receptor-like 1. Infect Immun 70:2908–2914

    Article  PubMed  CAS  Google Scholar 

  14. Cui Y, Le Y, Yazawa H, et al (2002) Potential role of the formyl peptide receptor-like 1 (FPRL1) in inflammatory aspects of Alzheimer’s disease. J Leukoc Biol 72:628–635

    PubMed  CAS  Google Scholar 

  15. Le Y, Hu J, Gong W, et al (2000) Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol 111:102–108

    Article  PubMed  CAS  Google Scholar 

  16. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354

    Article  PubMed  CAS  Google Scholar 

  17. Parpura V, Basarsky TA, Liu F, et al (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  PubMed  CAS  Google Scholar 

  18. Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812

    Article  PubMed  CAS  Google Scholar 

  19. Perea G, Araque A (2005) Glial calcium signaling and neuron-glia communication. Cell Calcium 38:375–382

    Article  PubMed  CAS  Google Scholar 

  20. Araque A, Sanzgiri RP, Parpura V, et al (1998) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829

    PubMed  CAS  Google Scholar 

  21. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  22. Lewis RS (2003) Calcium oscillations in T-cells: mechanisms and consequences for gene expression. Biochem Soc Trans 31:925–929

    Article  PubMed  CAS  Google Scholar 

  23. Gill DL, Waldron RT, Rys-Sikora KE, et al (1996) Calcium pools, calcium entry, and cell growth. Biosci Rep 16:139–157

    Article  PubMed  CAS  Google Scholar 

  24. New DC, Wong YH (2004) Characterization of CHO cells stably expressing a Gα16/z chimera for high throughput screening of GPCRs. Assay Drug Dev Technol 2:269–280

    Article  PubMed  CAS  Google Scholar 

  25. Bae YS, Lee HY, Jo EJ, et al (2004) Identification of peptides that antagonize formyl peptide receptor-like 1-mediated signaling. J Immunol 173:607–614

    PubMed  CAS  Google Scholar 

  26. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80:1291–1335

    PubMed  CAS  Google Scholar 

  27. New DC, An H, Ip NY, et al (2006) GABAB heterodimeric receptors promote Ca2+ influx via store-operated channels in rat cortical neurons and transfected Chinese hamster ovary cells. Neuroscience 137:1347–1358

    Article  PubMed  CAS  Google Scholar 

  28. Bootman MD, Collins TJ, Mackenzie L, et al (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. Faseb J 16:1145–1150

    Article  PubMed  CAS  Google Scholar 

  29. Partida-Sanchez S, Cockayne DA, Monard S, et al (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216

    Article  PubMed  CAS  Google Scholar 

  30. Latour I, Hamid J, Beedle AM, et al (2003) Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 41:347–353

    Article  PubMed  Google Scholar 

  31. Jalonen TO, Margraf RR, Wielt DB, et al (1997) Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res 758:69–82

    Article  PubMed  CAS  Google Scholar 

  32. Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531–536

    Article  PubMed  CAS  Google Scholar 

  33. Chan JS, Lee JW, Ho MK, et al (2000) Preactivation permits subsequent stimulation of phospholipase C by Gi-coupled receptors. Mol Pharmacol 57:700–708

    PubMed  CAS  Google Scholar 

  34. Joshi S, Lee JW, Wong YH (1999) Stimulation of phospholipase C by the cloned μ, δ and κ opioid receptors via chimeric Gαq mutants. Eur J Neurosci 11:383–388

    Article  PubMed  CAS  Google Scholar 

  35. Smart D, Hirst RA, Hirota K, et al (1997) The effects of recombinant rat μ-opioid receptor activation in CHO cells on phospholipase C [Ca2+]i, and adenylyl cyclase. Br J Pharmacol 120:1165–1171

    Article  PubMed  CAS  Google Scholar 

  36. Nunn C, Cervia D, Langenegger D, et al (2004) Comparison of functional profiles at human recombinant somatostatin sst2 receptor: simultaneous determination of intracellular Ca2+ and luciferase expression in CHO-K1 cells. Br J Pharmacol 142:150–160

    Article  PubMed  CAS  Google Scholar 

  37. Dorn GW II, Oswald KJ, McCluskey TS, et al (1997) α2A-adrenergic receptor stimulated calcium release is transduced by Gi-associated Gβγ-mediated activation of phospholipase C. Biochemistry 36:6415–6423

    Article  PubMed  CAS  Google Scholar 

  38. Seo JK, Choi SY, Kim Y, et al (1997) A peptide with unique receptor specificity: stimulation of phosphoinositide hydrolysis and induction of superoxide generation in human neutrophils. J Immunol 158:1895–1901

    PubMed  CAS  Google Scholar 

  39. Seo JK, Bae YS, Song H, et al (1998) Distribution of the receptor for a novel peptide stimulating phosphoinositide hydrolysis in human leukocytes. Clin Biochem 31:137–141

    Article  PubMed  CAS  Google Scholar 

  40. Bae YS, Yi HJ, Lee HY, et al (2003) Differential activation of formyl peptide receptor-like 1 by peptide ligands. J Immunol 171:6807–6813

    PubMed  CAS  Google Scholar 

  41. Le Y, Oppenheim JJ, Wang JM (2001) Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev 12:91–105

    Article  PubMed  CAS  Google Scholar 

  42. Tozzi A, Bengtson CP, Longone P, et al (2003) Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 18:2133–2145

    Article  PubMed  Google Scholar 

  43. Itagaki K, Kannan KB, Livingston DH, et al (2002) Store-operated calcium entry in human neutrophils reflects multiple contributions from independently regulated pathways. J Immunol 168:4063–4069

    PubMed  CAS  Google Scholar 

  44. Boulay G, Zhu X, Peyton M, et al (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680

    Article  PubMed  CAS  Google Scholar 

  45. Kim JH, Choi S, Jung JE, et al (2006) Capacitative Ca2+ entry is involved in regulating soluble amyloid precursor protein (sAPPα) release mediated by muscarinic acetylcholine receptor activation in neuroblastoma SH-SY5Y cells. J Neurochem 97:245–254

    Article  PubMed  CAS  Google Scholar 

  46. Irvine RF (1990) ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates—a possible mechanism. FEBS Lett 263:5–9

    Article  PubMed  CAS  Google Scholar 

  47. Patterson RL, van Rossum DB, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98:487–499

    Article  PubMed  CAS  Google Scholar 

  48. Ma HT, Patterson RL, van Rossum DB, et al (2000) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651

    Article  PubMed  CAS  Google Scholar 

  49. Maruyama T, Kanaji T, Nakade S, et al (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem (Tokyo) 122:498–505

    CAS  Google Scholar 

  50. Gregory RB, Rychkov G, Barritt GJ (2001) Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 354:285–290

    Article  PubMed  CAS  Google Scholar 

  51. Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J Physiol 536:3–19

    Article  PubMed  CAS  Google Scholar 

  52. Putney JW Jr, Broad LM, Braun FJ, et al (2001) Mechanisms of capacitative calcium entry. J Cell Sci 114:2223–2229

    PubMed  CAS  Google Scholar 

  53. Spassova MA, Soboloff J, He LP, et al (2004) Calcium entry mediated by SOCs and TRP channels: variations and enigma. Biochim Biophys Acta 1742:9–20

    Article  PubMed  CAS  Google Scholar 

  54. Ma HT, Venkatachalam K, Li HS, et al (2001) Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca2+ entry channels. J Biol Chem 276:18888–18896

    Article  PubMed  CAS  Google Scholar 

  55. Launikonis BS, Barnes M, Stephenson DG (2003) Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc Natl Acad Sci USA 100:2941–2944

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Richard Ye for kindly providing the cDNA of FPRL-1 and Dr. Andrew Miller for kindly providing the GdCl3. We also thank Dr. David New for generating the FPRL-1/CHO cells. This work was supported in part by grants from the Research Grants Council of Hong Kong (HKUST 3/03C), the University Grants Committee (AoE/B-15/01), and the Hong Kong Jockey Club. YHW was a recipient of the Croucher Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung H. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwan, D.H.T., Kam, A.Y.F. & Wong, Y.H. Activation of the Human FPRL-1 Receptor Promotes Ca2+ Mobilization in U87 Astrocytoma Cells. Neurochem Res 33, 125–133 (2008). https://doi.org/10.1007/s11064-007-9425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9425-7

Keywords

Navigation