Skip to main content
Log in

Intense Exercise Induces Mitochondrial Dysfunction in Mice Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There are conflicts between the effects of free radical over-production induced by exercise on neurotrophins and brain oxidative metabolism. The objective of this study was to investigate the effects of intense physical training on brain-derived neurotrophic factor (BDNF) levels, COX activity, and lipoperoxidation levels in mice brain cortex. Twenty-seven adult male CF1 mice were assigned to three groups: control untrained, intermittent treadmill exercise (3 × 15 min/day) and continuous treadmill exercise (45 min/day). Training significantly (P < 0.05) increased citrate synthase activity when compared to untrained control. Blood lactate levels classified the exercise as high intensity. The intermittent training significantly (P < 0.05) reduced in 6.5% the brain cortex COX activity when compared to the control group. BDNF levels significantly (P < 0.05) decreased in both exercise groups. Besides, continuous and intermittent exercise groups significantly (P < 0.05) increased thiobarbituric acid reactive species levels in the brain cortex. In summary, intense exercise promoted brain mitochondrial dysfunction due to decreased BDNF levels in the frontal cortex of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

COX:

Cytochrome c oxidase

CREB:

Cyclic AMP response element-binding protein

CS:

Citrate synthase

ETC:

Electron transport chain

mRNA:

Messenger RNA

mtDNA:

Mitochondrial DNA

NMDA:

N-methyl-d-aspartate receptor

TBARS:

Thiobarbituric acid reactive species

ROS:

Reactive oxygen species

References

  1. Aguiló A, Tauler P, Fuentespina E, et al (2005) Antioxidant response to oxidative stress induced by intense exercise. Physiol Behav 84:1–7

    Article  PubMed  CAS  Google Scholar 

  2. Alp PR, Newsholme EA, Zammit VA (1976) Activities of Citrate Synthase and NAD+-Linked and NADP+-Linked Isocitrate Dehydrogenase in Muscle from Vertebrates and Invertebrates. Biochem J 154:689–700

    PubMed  CAS  Google Scholar 

  3. Albeck DS, Beck KD, Kung LH et al (2005) Leverpress escape/avoidance training increases neurotrophin levels in rat brain. Integr Physiol Behav Sci 1:28–34

    Article  Google Scholar 

  4. Arida RM, Scorza CA, Silva AV et al (2004) Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation. Neurosci Lett 364:135–138

    Article  PubMed  CAS  Google Scholar 

  5. Behl C (2005) Oxidative stress in Alzheimer’s disease: implications for prevention and therapy. Subcell Biochem 38:65–78

    PubMed  CAS  Google Scholar 

  6. Billat VL, Mouisel E, Roblot N et al (2005) Inter- and intrastrain variation in mouse critical running speed. J Appl Physiol 4:1258–1263

    Article  Google Scholar 

  7. Briones TL, Suh E, Jozsa L et al (2005) Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training. Brain Res 1:51–57

    Article  CAS  Google Scholar 

  8. Calabrese V, Lodi TR, Tonon C et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233:145–162

    Article  PubMed  CAS  Google Scholar 

  9. Colcombe SJ, Kramer AF, Erickson KI et al (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA 101:3316–3321

    Article  PubMed  CAS  Google Scholar 

  10. Cosķun S, Gonul B, Guzel NA et al (2005) The effects of vitamin C supplementation on oxidative stress and antioxidant content in the brains of chronically exercised rats. Mol Cell Biochem 1–2:135–138

    Google Scholar 

  11. Cotman CW, Berchtold NC, Adlard PA et al (2005) Exercise and the Brain. In: Mooren FC, Völker K (eds) Molecular and cellular exercise physiology. Champaign, IL, USA, pp 331–341

    Google Scholar 

  12. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301

    Article  PubMed  CAS  Google Scholar 

  13. Cronin JB, McNair PJ, Marshall RN (2002) Is velocity-specific strength training important in improving functional performance? J Sports Med Phys Fitness 3:267–273

    Google Scholar 

  14. Denadai BS (2000) Avaliação aeróbia. In: Denadai BS (ed) Avaliação aeróbia, vol. 1. Motrix, Rio Claro-Brazil, pp 22–24

    Google Scholar 

  15. Ding Q, Vaynman S, Akhavan M et al (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 3:823–833

    Article  CAS  Google Scholar 

  16. Ding Y, Li J, Luan X et al (2004) Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 3:583–591

    Article  CAS  Google Scholar 

  17. Dohm MR, Hayes JP, Garland T Jr (2001) The quantitative genetics of maximal and basal rates of oxygen consumption in mice. Genetics 159:267–277

    PubMed  CAS  Google Scholar 

  18. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Meth Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  19. Duncan AJ, Heales SJ (2005) Nitric oxide and neurological disorders. Mol Aspects Med 1–2:67–96

    Article  CAS  Google Scholar 

  20. Ebadi M, Leuschen MP, el Refaey H et al (1996) The antioxidant properties of zinc and metallothionein. Neurochem Int 2:159–66

    Article  Google Scholar 

  21. Fauchex BA, Martin ME, Beaumont C et al (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s Disease. J Neurochem 5:1142–1148

    Article  CAS  Google Scholar 

  22. Floyd RA (1999) Antioxidants, oxidative stress, and neurological disorders. Exp Biol Med 222:236–245

    Article  CAS  Google Scholar 

  23. Garifoli A, Cardile V, Maci T et al (2003) Exercise increases cytochrome oxidase activity in specific cerebellar areas of the rat. Arch Ital Biol 4:181–187

    Google Scholar 

  24. Hellweg R, von Richthofen S, Anders D et al (1998) The time course of nerve growth factor content in different neuropsychiatric diseases—a unifying hypothesis. J Neural Transm 8–9:871–903

    Article  Google Scholar 

  25. Hessel E, Haberland A, Muller M et al (2000) Oxygen radical generation of neutrophils: a reason for oxidative stress during marathon running? Clin Chim Acta 1–2:145–156

    Article  Google Scholar 

  26. Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 4:397–414

    Article  Google Scholar 

  27. Jacobson J, Duchen MR, Hothersall J et al (2005). Induction of mitochondrial oxidative stress in astrocytes by nitric oxide precedes disruption of energy metabolism. J Neurochem 2:388–395

    Article  CAS  Google Scholar 

  28. Jolitha AB, Subramanyam MVV, Devi S (2006) Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: studies on superoxide dismutase isoenzymes and protein oxidation status. Exp Gerontol 41:753–763

    Article  PubMed  CAS  Google Scholar 

  29. Kann O, Kovacs R (2006) Mitochondria and Neuronal Activity. Am J Physiol Cell Physiol 2:641–657

    Article  CAS  Google Scholar 

  30. Keeney PM, Xie J, Capaldi RA et al (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 19:5256–264

    Article  CAS  Google Scholar 

  31. Kim MW, Bang MS, Han TR, Ko YJ, Yoon BW, Kim JH, Kang LM, Lee KM, Kim MH (2005) Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain Res 1:16–21

    Article  CAS  Google Scholar 

  32. Koteja P, Swallow JG, Carter PA et al (1999) Energy cost of wheel running in house mice: implications for coadaptation of locomotion and energy budgets. Physiol Biochem Zool 2:238–249

    Article  Google Scholar 

  33. Kress J, Dineley KE, Reynolds IJ (2002) The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci 14:5848–5855

    Google Scholar 

  34. Lambert MI, Van Zyl C, Jaunky R et al (1996) Tests of running performance do not predict subsequent spontaneous running in rats. Physiol Behav 1:171–176

    Article  Google Scholar 

  35. Lewis MH (2004) Environmental complexity and central nervous system development and function. Ment Retard Dev Disabil Res Ver 2:91–95

    Article  Google Scholar 

  36. Light KE, Ge Y, Belcher SM (2001) Early postnatal ethanol exposure selectively decreases BDNF and truncated TrkB-T2 receptor mRNA expression in the rat cerebellum. Brain Res Mol Brain Res 1:46–55

    Article  Google Scholar 

  37. Lightfoot JT, Turner MJ, Debate KA et al (2001) Interstrain variation in murine aerobic capacity. Med Sci Sports Exerc 33:2053–2057

    Article  PubMed  CAS  Google Scholar 

  38. Liu J, Yeo HC, Overvik-Douki E et al (2000) Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 1:21–28

    Google Scholar 

  39. Lowry OH, Rosebough NG, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  40. Lu C, Chan SL, Haughey N et al (2001) Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-d-aspartate channels. J Neurochem 3:577–589

    Article  Google Scholar 

  41. Mader A, Heck (1986) A theory of metabolic origin of the anaerobic threshold. Int J Sports Med 7:45–65

    Article  PubMed  Google Scholar 

  42. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1:134–147

    Article  Google Scholar 

  43. Maswood N, Young J, Tilmont E et al (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. PNAS 101:18171–18176

    Article  PubMed  CAS  Google Scholar 

  44. Mattson MP, Liu D (2002) Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med 2:215–231

    Article  PubMed  CAS  Google Scholar 

  45. Mondon CE, Dolkas CB, Sims C et al (1985) Spontaneous running activity in male rats: effect of age. J Appl Physiol 5:1553–1557

    Google Scholar 

  46. Navarro A (2004) Mitochondrial enzyme activities as biochemical markers of aging. Mol Aspects Med 25:37–48

    Article  PubMed  CAS  Google Scholar 

  47. Navarro A, Del Pino MJS, Gomez C et al (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 282:985–992

    Google Scholar 

  48. Nied RJ, Franklin B (2002) Promoting and prescribing exercise for the elderly. Am Fam Physician 3:419–426

    Google Scholar 

  49. Ogonovszky H, Berkes I, Kumagai S et al (2005) The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNA repair, and memory, in rat brain. Neurochem Int 46:635–640

    Article  PubMed  CAS  Google Scholar 

  50. Özkaya YG, Agar A, Yargicoglu P et al (2002) The effect of exercise on brain antioxidant status of diabetic rats. Diabetes Metab 5:377–384

    Google Scholar 

  51. Pinho RA, Andrades ME, Oliveira MR et al (2006) Imbalance in SOD/CAT activities in rats skeletal muscles submitted to treadmill training exercise. Cell Biol Int 10:848–853

    Article  CAS  Google Scholar 

  52. Radák Z, Toldy A, Szabo Z et al (2006) The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochem Int 4:387–392

    Article  CAS  Google Scholar 

  53. Redila VA, Christie BR (2006) Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 4:1299–1307

    Article  CAS  Google Scholar 

  54. Rizzardini M, Lupi M, Mangolini A et al (2006) Neurodegeneration induced by complex I inhibition in a cellular model of familial amyotrophic lateral sclerosis. Brain Res Bull 4:465–474

    Article  CAS  Google Scholar 

  55. Roceri M, Hendriks W, Racagni G et al (2002) Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 6:609–616

    Article  CAS  Google Scholar 

  56. Rustin P, Chretien D, Bourgeron T et al (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  PubMed  CAS  Google Scholar 

  57. Sastre J, Asensi M, Gasco E et al (1992) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 5 Pt 2:992–995

    Google Scholar 

  58. Sen CK, Packer L (2000) Thiol homeostasis and supplements in physical exercise. Am J Nutr 72:653–669

    Google Scholar 

  59. Shibuya K, Tanaka J, Kuboyama N et al (2004) Cerebral oxygenation during intermittent supramaximal exercise. Respir Physiol Neurobiol 2:165–172

    Article  Google Scholar 

  60. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  PubMed  CAS  Google Scholar 

  61. Siu PM, Donley DA, Bryner RW et al (2003) Citrate Synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles. J Appl Physiol 94:555–560

    PubMed  CAS  Google Scholar 

  62. Somani SM, Ravi R, Rybak LP (1995) Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav 4:635–639

    Article  Google Scholar 

  63. Sureda A, Tauler P, Aguiló A et al (2005) Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 12:1317–1324

    Article  CAS  Google Scholar 

  64. Suzuki K, Machida K, Kariya M (1992) Conditions for low-intensity voluntary wheel running in rats and its chronic effects on health indexes. Nippon Eiseigaku Zasshi 5:939–951

    Google Scholar 

  65. Suzuki M, Katamine S, Tatsumi S (1983) Exercise-induced enhancement of lipid peroxide metabolism in tissues and their transference into the brain in rat. J Nutr Sci Vitaminol 2:141–151

    Google Scholar 

  66. Swain RA, Harris AB, Wiener EC et al (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 4:1037–1046

    Article  CAS  Google Scholar 

  67. Tauler P, Aguiló A, Gimeno I et al (2006) Response of blood cell antioxidant enzyme defences to antioxidant diet supplementation and to intense exercise. Eur J Nutr 4:187–195

    Article  CAS  Google Scholar 

  68. Tsai K, Hsu TG, Hsu KM et al (2001) Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radic Biol Med 11:1465–1472

    Article  Google Scholar 

  69. Vaynman S, Ying Z, Wu A et al (2006a) Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 4:1221–1234

    Article  CAS  Google Scholar 

  70. Vaynman S, Yinga Z, Yina D et al (2006b) Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res 1070:124–130

    Article  PubMed  CAS  Google Scholar 

  71. Voltarelli FA, Gobatto CA, Mello MAR (2002) Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res 35:1389–1394

    Article  PubMed  CAS  Google Scholar 

  72. Zhu SW, Pham TM, Aberg E et al (2006) Neurotrophin levels and behaviour in BALB/c mice: impact of intermittent exposure to individual housing and wheel running. Behav Brain Res 1:1–8

    Article  CAS  Google Scholar 

  73. Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from CNPq/MCT (Brazil), CAPES/MEC (Brazil), UNESC (Brazil) and FAPESC (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Pinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguiar, A.S., Tuon, T., Pinho, C.A. et al. Intense Exercise Induces Mitochondrial Dysfunction in Mice Brain. Neurochem Res 33, 51–58 (2008). https://doi.org/10.1007/s11064-007-9406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9406-x

Keywords

Navigation