Skip to main content
Log in

Docosahexaenoic Acid Enhances Iron Uptake by Modulating Iron Transporters and Accelerates Apoptotic Death in PC12 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of docosahexaenoic acid (DHA; 22:6 n–3) on Fe2+-mediated and/or H2O2-mediated oxidative stress (OS) was investigated in a PC12 pheochromocytoma cell line in the presence or absence of 50 ng/ml nerve growth factor (NGF). DHA-supplemented cells showed enhanced Fe2+-induced cell damage as evident by increased lipid peroxides formation (10-fold) and reduced neutral red (NR) dye uptake in a NGF-independent fashion. DHA caused a nearly 10-fold increase in free iron uptake in NGF-treated cells and doubled iron uptake in nondifferentiated cells. DHA-enrichment induced an elevation in the transferrin receptor protein in the nondifferentiated cells whereas NGF-treatment led to a substantial increase in the ubiquitous divalent metal ion transporter 1 (DMT-1) as detected by mRNA levels using qRT-PCR. The mechanism of action of DHA to accelerate cell death may be associated with the externalization of amino-phosphoglycerides (PG) species of which, increased ethanolamine plasmalogen levels, may be essential for cell rescue as noted in NGF-treated PC12 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

DAPI:

4′,6-Diamidino-2-phenylindole

DHA:

Docosahexaenoic acid

DMT-1:

Divalent metal ion transporter 1

EPG:

Ethanolamine phosphoglyceride

FA:

Fatty acid

HIP:

Hexane/isopropanol

IRE:

Iron responsive element

LPO:

Lipid peroxidation

NGF:

Nerve growth factor

NPBI:

Nonprotein-bound iron

OS:

Oxidative stress

PG:

Phosphoglycerides

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

TfR:

Transferrin receptor

TNBS:

2,4,6-Trinitrobenzenesulfonic acid

TNP:

Trinitrophenylate

TUNEL:

Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling

References

  1. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 3:236–245

    Article  Google Scholar 

  2. Yavin E, Brand A, Green P (2002) Docosahexaenoic acid abundance in the brain: a biodevice to combat oxidative stress. Nutr Neurosci 5:149–157

    Article  PubMed  CAS  Google Scholar 

  3. Blomgren K, Hagberg H (2006) Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 40:388–397

    Article  PubMed  CAS  Google Scholar 

  4. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:S715–S725

    Google Scholar 

  5. Rice-Evans C, Burdon R (1993) Free radicals–lipid interactions and their pathological consequences. Prog Lipid Res 32:71–110

    Article  PubMed  CAS  Google Scholar 

  6. Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 1762:256–265

    PubMed  CAS  Google Scholar 

  7. Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8:197–204

    Article  PubMed  CAS  Google Scholar 

  8. Lee JC, Son YO, Choi KC et al (2006) Hydrogen peroxide induces apoptosis of BJAB cells due to formation of hydroxyl radicals via intracellular iron-mediated Fenton chemistry in glucose oxidase-mediated oxidative stress. Mol Cells 22:21–29

    PubMed  CAS  Google Scholar 

  9. Palmer C, Roberts L, Bero C (1994) Deferoxamine post-treatment reduces ischemia brain injury in neonatal rats. Stroke 25:1039–1045

    PubMed  CAS  Google Scholar 

  10. Dai L, Winyard PG, Zhang Z et al (1996) Ascorbate promotes low density lipoprotein oxidation in the presence of ferritin. Biochim Biophys Acta 1304:223–228

    PubMed  CAS  Google Scholar 

  11. Double KL, Maywald M, Schmittel M et al (1998) In vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70:2492–2499

    Article  PubMed  CAS  Google Scholar 

  12. Shadid M, Buonocore G, Groenendaal F et al (1998) Effect of deferoxamine and allopurinol on non-protein-bound iron concentrations in plasma and cortical brain tissue of newborn lambs following hypoxia–ischemia. Neurosci Lett 248:5–8

    Article  PubMed  CAS  Google Scholar 

  13. Sorond FA, Ratan RR (2000) Ironing-out mechanisms of neuronal injury under hypoxic–ischemic conditions and potential role of iron chelators as neuroprotective agents. Antioxid Redox Signal 2:421–436

    Article  PubMed  CAS  Google Scholar 

  14. Zheng H, Gal S, Weiner LM et al (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 95(1):68–78

    Article  PubMed  CAS  Google Scholar 

  15. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imag 17(1):5–17

    Article  Google Scholar 

  16. de los Monteros AE, Korsak RA, Tran T et al (2000) Dietary iron and the integrity of the developing rat brain: a study with the artificially-reared rat pup. Cell Mol Biol (Noisy-le-grand) 46:501–515

    Google Scholar 

  17. Maynard CJ, Cappai R, Volitakis I et al (2002) Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277:44670–44676

    Article  PubMed  CAS  Google Scholar 

  18. Zecca L, Youdim MB, Riederer P et al (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  PubMed  CAS  Google Scholar 

  19. Bartzokis G, Tishler TA, Lu PH et al (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28(3):414–423

    Article  PubMed  CAS  Google Scholar 

  20. Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18

    Article  PubMed  CAS  Google Scholar 

  21. Zalska MM, Floyd RA (1985) Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res 10:397–410

    Article  Google Scholar 

  22. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  23. Homan JA, Radel JD, Wallace DD et al (2000) Chemical changes in the photoreceptor outer segment due to iron induced oxidative stress: analysis by Fourier transform infrared (FT-IR) microspectroscopy. Cell Mol Biol 46:663–672

    PubMed  CAS  Google Scholar 

  24. Honda K, Smith MA, Zhu X et al (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986

    Article  PubMed  CAS  Google Scholar 

  25. Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46:607–636

    Article  PubMed  CAS  Google Scholar 

  26. Fernandes G, Troyer DA, Jolly CA (1998) The effects of dietary lipids on gene expression and apoptosis. Proc Nutr Soc 57:543–550

    Article  PubMed  CAS  Google Scholar 

  27. Relton JK, Strijbos PJLM, Cooper AL et al (1993) Dietary n–3 fatty acids inhibit ischaemic and excitotoxic brain damage in the rat. Brain Res Bull 32:223–226

    Article  PubMed  CAS  Google Scholar 

  28. Billman GE, Hallaq H, Leaf A (1994) Prevention of ischemia-induced ventricular fibrillation by omega-3 fatty acids. Proc Natl Acad Sci USA 91:4427–4430

    Article  PubMed  CAS  Google Scholar 

  29. Yavin E, Brand A (2005) From intramolecular asymmetries to raft assemblies: a short guide for the puzzled in lipidomics. In: Mattson MP (eds) Membrane microdomain signaling. Humana Press, Totowa, New Jersey, pp1–14

    Google Scholar 

  30. Brand A, Gil S, Yavin E (2000) N-methyl bases of ethanolamine prevent apoptotic cell death induced by oxidative stress in cells of oligodendroglia origin. J Neurochem 74:1596–1604

    Article  PubMed  CAS  Google Scholar 

  31. Brand A, Gil S, Seger R et al (2001) Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation. J Neurochem 76:910–918

    Article  PubMed  CAS  Google Scholar 

  32. Brand A, Yavin E (2001) Early ethanolamine phospholipid translocation marks stress-induced apoptotic cell death in oligodendroglial cells. J Neurochem 78:1208–1218

    Article  PubMed  CAS  Google Scholar 

  33. Brand A, Yavin E (2005) Translocation of ethanolamine phosphoglyceride is required for initiation of apoptotic death in OLN-93 oligodendroglial cells. Neurochem Res 30(10):1257–1267

    Article  PubMed  CAS  Google Scholar 

  34. Ikemoto A, Kobayashi T, Emoto K et al (1999) Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of amino phospholipids during neuronal differentiation of PC12 cells. Arch Biochem Biophys 364:67–74

    Article  PubMed  CAS  Google Scholar 

  35. Martin RE, Wickham JQ, Om AS et al (2000) Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids: evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells. Neurochem Res 25(5):715–723

    Article  PubMed  CAS  Google Scholar 

  36. Marszalek JR, Kitidis C, Dararutana A et al (2004) Acyl-CoA synthetase 2 overexpression enhances fatty acid internalization and neurite outgrowth. J Biol Chem 279(23):23882–23891

    Article  PubMed  CAS  Google Scholar 

  37. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  38. Hinshaw DB, Miller MT, Omann GM et al (1993) A cellular model of oxidant-mediated neuronal injury. Brain Res 615(1):13–26

    Article  PubMed  CAS  Google Scholar 

  39. Richter-Landsberg C, Besser A (1994) Effects of organotins on rat brain astrocytes in culture. J Neurochem 63:2202–2209

    Article  PubMed  CAS  Google Scholar 

  40. Burton K (1968) Determination of DNA concentration with diphenylamine. Meth Enzymol 12B:163–166

    Google Scholar 

  41. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Meth Enzymol 186:407–421

    Article  PubMed  CAS  Google Scholar 

  42. Sleight RG, Pagano RE (1983) Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem 258:9050–9058

    PubMed  CAS  Google Scholar 

  43. Yavin E, Zutra A (1977) Separation and analysis of 32P-labeled phospholipids by a simple and rapid two-directional thin-layer chromatography procedure and its application to cultured neuroblastoma cells. Anal Biochem 80:430–437

    Article  PubMed  CAS  Google Scholar 

  44. Riemer J, Hoepken HH, Czerwinska H et al (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375

    Article  PubMed  CAS  Google Scholar 

  45. Bradford MM (1986) A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:238–259

    Google Scholar 

  46. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31(1):1–9

    Article  PubMed  Google Scholar 

  47. Smeets EF, Comfurius P, Bevers EM et al (1994) Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes. Biochem Biophys Acta 1195:281–286

    Article  PubMed  Google Scholar 

  48. Rami A, Sims J, Botez G et al (2003) Spatial resolution of phospholipid scramblase 1 (PLSCR1), caspase-3 activation and DNA-fragmentation in the human hippocampus after cerebral ischemia. Neurochem Int 43:79–87

    Article  PubMed  CAS  Google Scholar 

  49. Mwanjewe J, Hui BK, Coughlin MD et al (2001) Treatment of PC12 cells with nerve growth factor increases iron uptake. Biochem J 357:881–886

    Article  PubMed  CAS  Google Scholar 

  50. Satoh T, Yamagata T, Ishikawa Y et al (1999) Regulation of reactive oxygen species by nerve growth factor but not Bcl-2 as a novel mechanism of protection of PC12 cells from superoxide anion-induced death. J Biochem (Tokyo) 125:952–959

    CAS  Google Scholar 

  51. Zhang L, Jope RS (1999) Oxidative stress differentially modulates phosphorylation of ERK, p38 and CREB induced by NGF or EGF in PC12 cells. Neurobiol Aging 20:271–278

    Article  PubMed  CAS  Google Scholar 

  52. Schafer FQ, Qian SY, Buettner GR (2000) Iron and free radical oxidations in cell membranes. Cell Mol Biol (Noisy-le-grand) 46(3):657–662

    CAS  Google Scholar 

  53. Bradbury MWB (1997) Transport of iron in the blood–brain–cerebrospinal fluid system. J Neurochem 69:443–451

    Article  PubMed  CAS  Google Scholar 

  54. Wang J, Qian ZM, Jiang H et al (2005) Treatment with nerve growth factor decreases expression of divalent metal transporter 1 and transferrin receptor in PC12 cells. Neurochem Int 47:514–517

    Article  PubMed  CAS  Google Scholar 

  55. Roth JA, Horbinski C, Feng L et al (2000) Differential localization of divalent metal transporter 1 with and without iron response element in rat PC12 and sympathetic neuronal cells. J Neurosci 20(20):7595–7601

    PubMed  CAS  Google Scholar 

  56. Gunshin H, Mackenzie B, Berger UV et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  PubMed  CAS  Google Scholar 

  57. Fadok VA, Bratton DL, Henson PM (2001) Phagocytes receptors for apoptotic cells: recognition, uptake and consequences. J Clin Invest 180:957–962

    Article  Google Scholar 

  58. Reiss D, Beyer K, Engelmann B (1997) Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J 323:807–814

    PubMed  CAS  Google Scholar 

  59. Hahnel D, Beyer K, Engelmann B (1999) Inhibition of peroxyl radical-mediated lipid oxidation by plasmalogen phospholipids and alpha-tocopherol. Free Radic Boil Med 27:1087–1094

    Article  CAS  Google Scholar 

  60. Engelmann B (2004) Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans 32(Pt 1):147–150

    Article  PubMed  CAS  Google Scholar 

  61. Kuczynski B, Reo NV (2006) Evidence that plasmalogen is protective against oxidative stress in the rat brain. Neurochem Res 31(5):639–656

    Article  PubMed  CAS  Google Scholar 

  62. Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanisms: an overview. BioMetals 16:63–75

    Article  PubMed  CAS  Google Scholar 

  63. Ong WY, Halliwell B (2004) Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage? Ann N Y Acad Sci 1012:51–64

    Article  PubMed  CAS  Google Scholar 

  64. Thomas M, Jankovic J (2004) Neurodegenerative disease and iron storage in the brain. Curr Opin Neurol 17:437–442

    Article  PubMed  Google Scholar 

  65. Barcelo-Coblijn G, Hogyes E, Kitajka K et al (2003) Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proc Natl Acad Sci USA 100:11321–11326

    Article  PubMed  CAS  Google Scholar 

  66. Yehuda S, Rabinovitz S, Mostofsky DI (2005) Essential fatty acids and the brain: from infancy to aging. Neurobiol Aging 26S:S98–S102

    Article  CAS  Google Scholar 

  67. Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3:431–443

    Article  PubMed  CAS  Google Scholar 

  68. Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4:288–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant provided by the Gulton Foundation (New York). We thank Moussa Youdim for enlightening our thoughts on the importance of iron in brain physiology and pathology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Brand.

Additional information

Special issue dedicated to Dr. Moussa Youdim.

Equal scientific input of ES and AB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schonfeld, E., Yasharel, I., Yavin, E. et al. Docosahexaenoic Acid Enhances Iron Uptake by Modulating Iron Transporters and Accelerates Apoptotic Death in PC12 Cells. Neurochem Res 32, 1673–1684 (2007). https://doi.org/10.1007/s11064-007-9378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9378-x

Keywords

Navigation