Skip to main content
Log in

Molecular Mechanism of Inositol Hexaphosphate-mediated Apoptosis in Human Malignant Glioblastoma T98G Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glioblastoma is the deadliest brain tumor in humans. Current therapies are mostly ineffective and new agents need to be explored for controlling this devastating disease. Inositol hexaphosphate (IP6) is a phytochemical that is widely found in corns, cereals, nuts, and high fiber-content foods. Previous studies demonstrated anti-cancer properties of IP6 in several in vitro and in vivo tumor models. However, therapeutic efficacy of IP6 has not yet been evaluated in glioblastoma. Here, we explored the molecular mechanism of action of IP6 in human malignant glioblastoma T98G cells. The viability of T98G cells decreased following treatment with increasing doses of IP6. T98G cells exposed to 0.25, 0.5, and 1 mM IP6 for 24 h showed morphological and biochemical features of apoptosis. Western blotting indicated changes in expression of Bax and Bcl-2 proteins resulting in an increase in Bax:Bcl-2 ratio and upregulation of cytosolic levels of cytochrome c and Smac/Diablo, suggesting involvement of mitochondria-dependent caspase cascade in apoptosis. IP6 downregulated cell survival factors such as baculovirus inhibitor-of-apoptosis repeat containing-2 (BIRC-2) protein and telomerase to promote apoptosis. Upregulation of calpain and caspase-9 occurred in course of apoptosis. Increased activities of calpain and caspase-3 cleaved 270 kD α-spectrin at specific sites generating 145 kD spectrin break down product (SBDP) and 120 kD SBDP, respectively. Increased caspase-3 activity also cleaved inhibitor of caspase-3-activated DNase and poly(ADP-ribose) polymerase. Collectively, our results demonstrated that IP6 down regulated the survival factors BIRC-2 and telomerase and upregulated calpain and caspase-3 activities for apoptosis in T98G cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kelloff GJ, Crowell JA, Steele VE et al (2000) Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr 130:467S–471S

    PubMed  CAS  Google Scholar 

  2. Fimognari C, Nusse M, Berti F et al (2004) Isothiocyanates as novel cytotoxic and cytostatic agents: molecular pathway on human transformed and non-transformed cells. Biochem Pharmacol 68:1133–1138

    Article  PubMed  CAS  Google Scholar 

  3. Shamsuddin AM, Vucenik I, Cole KE (1997) IP6: a novel anti-cancer agent. Life Sci 61:343–354

    Article  PubMed  CAS  Google Scholar 

  4. Shamsuddin AM (1999) Metabolism and cellular functions of IP6: a review. Anticancer Res 19:3733–3736

    PubMed  CAS  Google Scholar 

  5. Ferry S, Matsuda M, Yoshida H et al (2002) Inositol hexakisphosphate blocks tumor cell growth by activating apoptotic machinery as well as by inhibiting the Akt/NFκB-mediated cell survival pathway. Carcinogenesis 23:2031–2041

    Article  PubMed  CAS  Google Scholar 

  6. Shamsuddin AM, Baten A, Lalwani ND (1992) Effects of inositol hexaphosphate on growth and differentiation in K562 erythroleukemia cell line. Cancer Lett 64:195–202

    Article  PubMed  CAS  Google Scholar 

  7. Sakamoto K, Venkatraman G, Shamsuddin AM (1993) Growth inhibition and differentiation of HT-29 cells in vitro by inositol hexaphosphate (phytic acid). Carcinogenesis 14:1815–1819

    Article  PubMed  CAS  Google Scholar 

  8. Shamsuddin AM, Yang GY, Vucenik I (1996) Novel anti-cancer functions of IP6: growth inhibition and differentiation of human mammary cancer cell lines in vitro. Anticancer Res 16:3287–3292

    PubMed  CAS  Google Scholar 

  9. Zi X, Singh RP, Agarwal R (2000) Impairment of erbB1 receptor and fluid-phase endocytosis and associated mitogenic signaling by inositol hexaphosphate in human prostate carcinoma DU145 cells. Carcinogenesis 21:2225–2235

    Article  PubMed  CAS  Google Scholar 

  10. Shamsuddin AM, Yang GY (1995) Inositol hexaphosphate inhibits growth and inducesdifferentiation of PC-3 human prostate cancer cells. Carcinogenesis 16:1975–1979

    Article  PubMed  CAS  Google Scholar 

  11. Singh RP, Agarwal C, Agarwal R (2003) Inositol hexaphosphate inhibits growth, and induces G1 arrest and apoptotic death of prostate carcinoma DU145 cells: modulation of CDKI-CDK-cyclin and pRb-related protein-E2F complexes. Carcinogenesis 24:555–563

    Article  PubMed  CAS  Google Scholar 

  12. Vucenik I, Tantivejkul K, Zhang ZS et al (1998) IP6 in treatment of liver cancer. I. IP6 inhibits growth and reverses transformed phenotype in HepG2 human liver cancer cell line. Anticancer Res 18:4083–4090

    PubMed  CAS  Google Scholar 

  13. Shamsuddin AM, Vucenik I (1999) Mammary tumor inhibition by IP6: a review. Anticancer Res 19:3671–3674

    PubMed  CAS  Google Scholar 

  14. Ullah A, Shamsuddin AM (1990) Dose-dependent inhibition of large intestinal cancer by inositol hexaphosphate in F344 rats. Carcinogenesis 11:2219–2222

    Article  PubMed  CAS  Google Scholar 

  15. Vucenik I, Tomazic VJ, Fabian D et al (1992) Antitumor activity of phytic acid (inositol hexaphosphate) in murine transplanted and metastatic fibrosarcoma, a pilot study. Cancer Lett 65:9–13

    Article  PubMed  CAS  Google Scholar 

  16. Vucenik I, Kalebic T, Tantivejkul K et al (1998) Novel anticancer function of inositol hexaphosphate: inhibition of human rhabdomyosarcoma in vitro and in vivo. Anticancer Res 18:1377–1384

    PubMed  CAS  Google Scholar 

  17. Vucenik I, Zhang ZS, Shamsuddin AM (1998) IP6 in treatment of liver cancer. II. Intra-tumoral injection of IP6 regresses pre-existing human liver cancer xenotransplanted in nude mice. Anticancer Res 18:4091–4096

    PubMed  CAS  Google Scholar 

  18. Vucenik I, Passaniti A, Vitolo MI et al (2004) Anti-angiogenic activity of inositol hexaphosphate (IP6). Carcinogenesis 25:2115–2123

    Article  PubMed  CAS  Google Scholar 

  19. Jenab M, Thompson LU (2000) Phytic acid in wheat bran affects colon morphology, cell differentiation and apoptosis. Carcinogenesis 21:1547–1552

    Article  PubMed  CAS  Google Scholar 

  20. Agarwal C, Dhanalakshmi S, Singh RP et al (2004) Inositol hexaphosphate inhibits growth and induces G1 arrest and apoptotic death of androgen-dependent human prostate carcinoma LNCaP cells. Neoplasia 6:646–659

    Article  PubMed  CAS  Google Scholar 

  21. Chakrabarti AK, Yoshida Y, Powers JM et al (1988) Calcium-activated neutral proteinase in rat brain myelin and subcellular fractions. J Neurosci Res 20:351–358

    Article  PubMed  CAS  Google Scholar 

  22. Karmakar S, Weinberg MS, Banik NL et al (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141:1265–1280

    Article  PubMed  CAS  Google Scholar 

  23. Karmakar S, Banik NL, Patel SJ et al (2006) Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett 407:53–58

    Article  PubMed  CAS  Google Scholar 

  24. Karmakar S, Banik NL, Patel SJ et al (2007) Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis 12:671–684

    Article  PubMed  CAS  Google Scholar 

  25. Ray SK, Karmakar S, Nowak MW et al (2006) Inhibition of calpain and caspase-3 prevented apoptosis and preserved electrophysiological properties of voltage-gated and ligand-gated ion channels in rat primary cortical neurons exposed to glutamate. Neuroscience 139:577–595

    Article  PubMed  CAS  Google Scholar 

  26. Karmakar S, Banik NL, Patel SJ et al (2007) 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett 415:242–247

    Article  PubMed  CAS  Google Scholar 

  27. Kim NW, Piatyszek MA, Prowse KR et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  28. Somasundar P, Riggs DR, Jackson BJ et al (2005) Inositol hexaphosphate (IP6): a novel treatment for pancreatic cancer. J Surg Res 126:199–203

    Article  PubMed  CAS  Google Scholar 

  29. Rizvi I, Riggs DR, Jackson BJ et al (2006) Inositol hexaphosphate (IP6) inhibits cellular proliferation in melanoma. J Surg Res 133:3–6

    Article  PubMed  CAS  Google Scholar 

  30. Farid P, Gomb SZ, Peter I et al (2001) bcl-2, p53 and bax in thyroid tumors and their relation to apoptosis. Neoplasma 48:299–301

    PubMed  CAS  Google Scholar 

  31. Jayanthi S, Deng X, Bordelon M et al (2001) Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J 15:1745–1752

    Article  PubMed  CAS  Google Scholar 

  32. Narita M, Shimizu S, Ito T et al (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686

    Article  PubMed  CAS  Google Scholar 

  33. Nutt LK, Pataer A, Pahler J et al (2002) Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277:9219–9225

    Article  PubMed  CAS  Google Scholar 

  34. Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  35. Kim R, Emi M, Tanabe K (2005) Caspase-dependent and -independent cell death pathways after DNA damage. Oncol Rep 14:595–599

    PubMed  CAS  Google Scholar 

  36. Imoto I, Yang ZQ, Pimkhaokham A et al (2001) Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res 61:6629–6634

    PubMed  CAS  Google Scholar 

  37. Dai Z, Zhu WG, Morrison CD et al (2003) A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum Mol Genet 12:791–801

    Article  PubMed  CAS  Google Scholar 

  38. Du C, Fang M, Li Y et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  PubMed  CAS  Google Scholar 

  39. Verhagen AM, Ekert PG, Pakusch M et al (2000) Identification of Diablo, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Article  PubMed  CAS  Google Scholar 

  40. Wilkinson JC, Wilkinson AS, Scott FL et al (2004) Neutralization of Smac/Diablo by inhibitors of apoptosis (IAPs). A caspase-independent mechanism for apoptotic inhibition. J Biol Chem 279:51082–51090

    Article  PubMed  CAS  Google Scholar 

  41. Adrain C, Creagh EM, Martin SJ (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20:6627–6636

    Article  PubMed  CAS  Google Scholar 

  42. Hasenjager A, Gillissen B, Muller A et al (2004) Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-xL in a strictly caspase-3-dependent manner in human carcinoma cells. Oncogene 23:4523–4535

    Article  PubMed  Google Scholar 

  43. DePinho RA (2000) The age of cancer. Nature 408:248–254

    Article  PubMed  CAS  Google Scholar 

  44. Massard C, Zermati Y, Pauleau AL et al (2006) hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 25:4505–4514

    Article  PubMed  CAS  Google Scholar 

  45. Jagadeesh S, Banerjee PP (2006) Inositol hexaphosphate represses telomerase activity and translocates TERT from the nucleus in mouse and human prostate cancer cells via the deactivation of Akt and PKCα. Biochem Biophys Res Commun 349:1361–1367

    Article  PubMed  CAS  Google Scholar 

  46. Nicoletti F, Bruno V, Fiore L et al (1989) Inositol hexakisphosphate (phytic acid) enhances Ca2+ influx and D-[3H] aspartate release in cultured cerebellar neurons. J Neurochem 53:1026–1030

    Article  PubMed  CAS  Google Scholar 

  47. Copani A, Raciti G, Bruno V et al (1991) Inositol hexakisphosphate stimulates 45Ca2+ influx in purified mitochondria from rat liver. Ital J Biochem 40:289–294

    PubMed  CAS  Google Scholar 

  48. Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  PubMed  CAS  Google Scholar 

  49. Yakovlev AG, Ota K, Wang G et al (2001) Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 21:7439–7446

    PubMed  CAS  Google Scholar 

  50. Nath R, Raser KJ, Stafford D et al (1996) Non-erythroid α-spectrin breakdown by calpain and interleukin 1β-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319:683–690

    PubMed  CAS  Google Scholar 

  51. Wang KK, Posmantur R, Nath R et al (1998) Simultaneous degradation of αII- and βII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273:22490–22497

    Article  PubMed  CAS  Google Scholar 

  52. Neumar RW, Xu YA, Gada H et al (2003) Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 278:14162–14167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the R01 grants (CA-91460 and NS-57811) from the National Institutes of Health (NIH) and by the Spinal Cord Injury Research Fund (SCIRF-0803) from the State of South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Ray.

Additional information

Special issue in honor of Naren Banik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmakar, S., Banik, N.L. & Ray, S.K. Molecular Mechanism of Inositol Hexaphosphate-mediated Apoptosis in Human Malignant Glioblastoma T98G Cells. Neurochem Res 32, 2094–2102 (2007). https://doi.org/10.1007/s11064-007-9369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9369-y

Keywords

Navigation