Skip to main content
Log in

A New Incremental PCA Algorithm With Application to Visual Learning and Recognition

Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper proposes a new mean-shifting Incremental PCA (IPCA) method based on the autocorrelation matrix. The dimension of the updated matrix remains constant instead of increasing with the number of input data points. Comparing to some previous batch and iterative PCA algorithms, the proposed IPCA requires lower computational time and storage capacity owing to the two transformations designed. The experiment results show the efficiency and accuracy of the proposed IPCA method in applications of the on-line visual learning and recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Artac M, Jogan M, Leonardis A (2002) Incremental PCA for on-line visual learning and recognition. In: Proceedings of the 16th international conference on pattern recognition, vol 3, pp 781–784

  2. Bannour S, Azimi-Sadjadi RM (1995) Principal component extraction using recursive least squares learning. IEEE Trans Neural Netw 6(2): 457–469

    Article  Google Scholar 

  3. Brand M (2002) Incremental singular value decomposition of uncertain data with missing values. In: Proceedings of the seventh European conference on computer vision (ECCV 2002), vol 2350, pp 707–720

  4. Chandrasekaran S, Manjunath BS, Wang YF, Winkeler J, Zhang H (1997) An eigenspace update algorithm for image analysis. Graph Models Image Process 59(5): 321–332

    Article  Google Scholar 

  5. Chin TJ, Suter D (2007) Incremental Kernel principal component analysis. IEEE Trans Image Process 16(6): 1662–1674

    Article  MathSciNet  Google Scholar 

  6. Hall P, Marshall D, Martin R (2000) Merging and spliting eigenspace models. IEEE Trans Pattern Anal Mach Intell 22(9): 1042–1048

    Article  Google Scholar 

  7. Li Y (2004) On incremental and robust subspace learning. Pattern Recognit 37(7): 1509–1518

    Article  MATH  Google Scholar 

  8. Lim J, Ross D, Lin RS, Yang MH (2004) Incremental learning for visual tracking. Advances in NIPS 17: 793–800

    Google Scholar 

  9. Liu Q, Cheng J, Lu H, Ma S (2004) Distance based Kernel PCA image reconstruction. In: Proceedings of the 17th international conference on pattern recognition (ICPR 2004), vol 3, pp 670–673

  10. LeCun Y (1998) The MNIST database of handwritten digits, NEC Research Institute. http://yann.lecun.com/exdb/mnist/index.html

  11. Levy A, Lindenbaum M (2000) Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Trans Image Process 9: 1371–1374

    Article  MATH  Google Scholar 

  12. Oja E (1982) A simplified neuron model as a principal component analyzer. J Math Biol 15: 267–273

    Article  MATH  MathSciNet  Google Scholar 

  13. Pang Y, Li X (2009) Iterative subspace analysis based on feature line distance. IEEE Trans Image Process 18(4): 903–907

    Article  Google Scholar 

  14. Pang Y, Wang L, Yuan Y (2009) Generalised KPCA theory by adaptive rules in feature space. Int J Comput Math (Taylor & Francis). doi:10.1080/00207160802044118.

  15. Sanger TD (1989) Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw 2: 459–473

    Article  Google Scholar 

  16. Skočaj D, Leonardis A (2006) Incremental and Robust learning of subspace representations. Image Vis Comput 26: 27–38

    Article  Google Scholar 

  17. Sun J, Tao D, Faloutsos C (2006) Beyond streams and graphs: dynamic tensor analysis. International conference on knowledge discovery and data mining 374–383

  18. Sun J, Tao D, Papadimitriou S, Yu PS, Faloutsos C (2008) Incremental tensor analysis: theory and applications. ACM Trans Knowl Discov Data 2(3)

  19. Tao D, Tang X, Li X, Rui Y (2006) Direct Kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm. IEEE Trans Multimed 8(4): 716–727

    Article  Google Scholar 

  20. Weng J, Zhang Y, Hwang WS (2003) Candid covariance-free incremental principal component analysis. IEEE Trans Pattern Anal Mach Intell 25(8): 1034–1040

    Article  Google Scholar 

  21. Wolf L, Shashua A (2003) Learning over sets using Kernel principal angles. J Mach Learn Res 4: 913–931

    Article  MathSciNet  Google Scholar 

  22. Yi Z, Fu Y, Hua HJ (2004) Neural networks based approach for computing eigenvectors and eigenvalues of symmetric matrix. Comput Math Appl 47: 1155–1164

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhao H, Yuen PC, Kwok JT (2006) A novel incremental principal component analysis and its application for face recognition. IEEE Trans Syst Man Cyber B Cyber 36(4): 873–886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Huang.

Additional information

This work was supported by Chinese 863 High-Tech Program under Grant 2007AA01Z321.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D., Yi, Z. & Pu, X. A New Incremental PCA Algorithm With Application to Visual Learning and Recognition. Neural Process Lett 30, 171–185 (2009). https://doi.org/10.1007/s11063-009-9117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-009-9117-1

Keywords

Navigation