Skip to main content
Log in

Augmented Reality in Sports Education and Training for Children with an Autism Spectrum Disorder

  • Review
  • Published:
Neurophysiology Aims and scope

3D modeling and augmented reality (AR) offer innovative perspectives for training in sports activity for children with autism spectrum disorders (ASDs). The objective of this review article is to offer a reflection on the design and learning methodology in the field of adapted physical activities, with the aim of improving its credibility toward children with ASDs. We also present an original experience of the development by AR in the team sport; an ergonomic approach to activity in a natural situation makes it possible to model the decision-making of children with ASD, and this is used to guide children with ASD to follow the existing avatar in the scene in a daily environment using AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fridhi, N. Bali, N. Rebai, and R. Kouki, “Geospatial virtual/augmented environment: applications for children with pervasive developmental disorders,” Neurophysiology, 52, 239–246 (2020); doi: https://doi.org/10.1007/s11062-020-09876-z.

    Article  Google Scholar 

  2. L. López-Faican and J. Jaén, “EmoFindAR: Evaluation of a mobile multiplayer augmented reality game for primary school children,” Comput. Educ., 149, 103814 (2020); doi: https://doi.org/10.1016/j.compedu.2020.103814.

    Article  Google Scholar 

  3. P. Madanipour and C. Cohrssen, “Augmented reality as a form of digital technology in early childhood education,” Australas. J. Early Child., 45, 5–13 (2020); doi: https://doi.org/10.1177/1836939119885311.

    Article  Google Scholar 

  4. S. Lester and J. Hofmann, “Some pedagogical observations on using augmented reality in a vocational practicum,” Br. J. Educ. Technol., 51, 607–866 (2020); doi: https://doi.org/10.1111/bjet.12901.

    Article  Google Scholar 

  5. I.-J. Lee, “Kinect-for-windows with augmented reality in an interactive roleplay system for children with an autism spectrum disorder,” Interact. Learn. Environ., 29, No. 1, 1–17 (2020); doi: https://doi.org/10.1080/10494820.2019.1710851.

    Article  Google Scholar 

  6. El Kabtane, M. El Adanani, M. Sadgal, and Y. Mourdi, “Virtual reality and augmented reality at the service of increasing interactivity in MOOCs,” Educ. Inf. Technol., 25, 2871–2897 (2020); doi: https://doi.org/10.1007/s10639-019-10054-w.

  7. R. Salar, F. Arici, S. Caliklar, and R. M. Yilmaz, “A model for augmented reality immersion experiences of university students studying in science education,” J. Sci. Educ. Technol., 29, 257–271 (2020); doi: https://doi.org/10.1007/s10956-019-09810-x.

    Article  Google Scholar 

  8. J. C. Rivadulla and M. Rodríguez, “Incorporation of saugmented reality in Science classroom. Contextos educativos.” Rev. Educ., 25, 237–255 (2020); doi:https://doi.org/10.18172/con.3865.

    Article  Google Scholar 

  9. J. Cabero-Almenara and R. Roig-Vila, “The motivation of technological scenarios in augmented reality (AR): Results of different experiments,” Appl. Sci., 9, No. 14, 2907 (2019); doi: https://doi.org/10.3390/app9142907.

  10. E. Demitriadou, K.-E. Stavroulia, and A. Lanitis, “Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education,” Educ. Inf. Technol., 25, 381–401 (2020); doi: https://doi.org/10.1007/s10639-019-09973-5.

    Article  Google Scholar 

  11. G. Nolasko De Almeida Mello and J. Cabero Almenara, “Aid-augmented reality for reinforced concrete class: Students’ perception,” Alteridad, 15, No. 1, 12–24 (2020); doi: https://doi.org/10.17163/alt.v15n1.2020.01.

  12. A.-M. Rodríguez-Garcia, F.-J. Hinojo-Lucena, and M. Ágreda-Montoro, “Diseño e implementación de una experiencia para trabajar la interculturalidad en Educación Infantil a través de realidad aumentada y códigos QR,” Educar, 55, No. 1, 59–77 (2019).

    Article  Google Scholar 

  13. D. Sahin and R. M. Yilmaz, “The effect of Augmented Reality Technology on middle school students’ achievements and attitudes towards science education,” Comput. Educ., 144, 103710 (2020); DOI: https://doi.org/10.1016/j.compedu.2019.103710.

    Article  Google Scholar 

  14. S. Habig, “Who can benefit from augmented reality in chemistry? Sex differences in solving stereochemistry problems using augmented reality,” Br. J. Educ. Technol., 51, No. 3, 629–644 (2019); doi: https://doi.org/10.1111/bjet.12891.

    Article  Google Scholar 

  15. F. Arici, P. Yildirim, S. Caliklar, and R. M. Yilmaz, “Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis,” Comput. Educ., 142, 103647 (2019); doi: https://doi.org/10.1016/j.compedu.2019.103647.

    Article  Google Scholar 

  16. M. Fidan and M. Tuncel, “Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Comput. Educ., 142, 103635 (2019); doi: https://doi.org/10.1016/j.compedu.2019.103635.

    Article  Google Scholar 

  17. K. F. Hsiao, “Using augmented reality for student’s health—Case of combining educational learning with standard fitness,” Multimed. Tools Appl., 64, 407–421 (2013); doi: https://doi.org/10.1007/s11042-011-0985-9.

    Article  Google Scholar 

  18. K. E. Chang, J. Zhang, Y.S. Huang, et al., “Applying augmented reality in physical education on motor skills learning,” Interact. Learn. Environ., 28, No. 6, 1–13 (2019); doi: https://doi.org/10.1080/10494820.2019.1636073.

    Article  Google Scholar 

  19. V. Gallego-Lema, J. A. Muñoz- Cristóba, H. F. Arribas-Cubero, and B. R. Avi, “Orienteering in the natural environment: Ubiquitous learning through the use of technology,” Movimento, 23, 755–770 (2017).

  20. I. Aznar-Díaz, M. P. Cáceres-Reche, J. M. Trujillo-Torres, and J. M. Romero-Rodríguez, “Mobile learning y tecnologías móviles emergentes en Educación Infantil: Percepciones de los maestros en formación,” Rev. Espac., 40, 14–21 (2019).

    Google Scholar 

  21. A. J. Moreno-Guerrero, C. Rodríguez-Jiménez, M. Ramos Navas-Parejo, and J. M. Sola-Reche, “Interés y motivacion del estudiantado de educacion secundaria en el uso de aurasma en el aula de educacion fisica,” Retos, 38, 333–340 (2020).

  22. L. Pugnetti, L. Mendozzi, A. Motta, et al., “Evaluation and retraining of adults’ cognitive impairment: which role for virtual reality technology?” Comput. Biol. Med., 25, No. 2, 213–227 (1995); doi: https://doi.org/10.1016/0010-4825(94)00040-w.

    Article  CAS  PubMed  Google Scholar 

  23. A. A. Rizzo, M. T. Schultheis, K. A. Kerns, and C. Mateer, “Analysis of assets for virtual reality applications in neuropsychology,” Neuropsychol. Rehab., 14, 207–239 (2004); doi: https://doi.org/10.1080/09602010343000183.

    Article  Google Scholar 

  24. I. Aznar-Díaz, J. M. Trujillo-Torres, and J. M. Romero-Rodríguez, “Estudio bibliométrico sobre la realidad virtual aplicada a la neurorrehabilitación y su influencia en la literatura científica,” Rev. Cuba. Inf. Cienc. Salud, 29, No. 2, 1–11 (2018).

    Google Scholar 

  25. G. Gómez-García, C. Rodríguez-Jiménez, and J. A. Marín-Marín, “La trascendencia de la Realidad Aumentada en la motivación estudiantil. Una revisión sistemática y meta-análisis,” Alteridad, 15, No. 1, 36–46 (2020); doi: https://doi.org/10.17163/alt.v15n1.2020.03.

    Article  Google Scholar 

  26. A. Fridhi, F. Benzarti, A. Frihida, and H. Amiri, “Application of virtual reality and augmented reality in psychiatry and neuropsychology, in particular in the case of autistic spectrum disorder (ASD),” Neurophysiology, 50, No. 3, 222–228 (2018); doi: https://doi.org/10.1007/s11062-018-9741-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fridhi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fridhi, A., Bali, N. Augmented Reality in Sports Education and Training for Children with an Autism Spectrum Disorder. Neurophysiology 54, 73–79 (2022). https://doi.org/10.1007/s11062-023-09937-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-023-09937-z

Keywords

Navigation