Skip to main content
Log in

EMG Activity of the Shoulder Girdle Muscles of Humans after Surgical Refixation of the Ruptured m. Pectoralis Major Tendon under Conditions of Simple Bimanual Motor Acts

  • Published:
Neurophysiology Aims and scope

In six men with injured m. pectoralis major and rupture of its tendon, subsequent reconstructive surgery, and a cycle of rehabilitation physical training, mechanograms of motor phenomena and EMG activity of four pairs of muscles of the shoulder girdle were recorded during tests with simple synchronous bimanual movements in which the mentioned muscles were involved. The experimental setup included a mechanotronic device with a coordinate table and a rail with a carriage and a force meter. Holding the rail by both hands, the subject had to either generate a static force with the rail and carriage being immobile, or make test movements according to the calibration trajectories, tracking these forces or movements with the help of visual feedback. The data were compared with similar data obtained in a control group of six healthy men of a comparable age. Special attention was paid to the analysis of the accuracy of performing motor test tasks, the asymmetry of EMG activity of the injured and intact m. pectoralis major, and manifestations of hysteresis in EMGs of shoulder girdle muscles. It was found that all the mentioned indices for the traumatized muscle in the group of patients did not show statistically significant differences compared with those of the intact muscle and similar muscles of the tested control group. It is concluded that the proposed restorative surgical intervention followed by an adequate cycle of rehabilitation training is effective and gives satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Stringer, A. N. Cockfield, and T. R. Sharpe, “Pectoralis major rupture in an active female,” J. Am. Acad. Orthop. Surg. Glob. Res. Rev., 3, No. 10, PMC6855497 (2019); doi: https://doi.org/10.5435/JAAOSGlobal-D-19-00030.

  2. T. D. Tarity, G. E. Garrigues, M. G. Ciccotti, et al., “Pectoralis major ruptures in professional American football players,” Phys. Sportsmed., 42, No. 3, 131–135 (2014); doi: https://doi.org/10.3810/psm.2014.09.2084.

    Article  PubMed  Google Scholar 

  3. K. Thompson, Y. Kwon, E. Flatow, et al., “Everything pectoralis major: from repair to transfer,” Phys. Sportsmed., 48, No. 1, 33–45 (2020); doi: https://doi.org/10.1080/00913847.2019.1637301.

    Article  PubMed  Google Scholar 

  4. A. G. Chan, G. C. Balazs, C. A. Haley, et al., “Pectoralis major rupture in military academy athletes,” Orthop. J. Sports Med., 7, No. 7, 2325967119860157 (2019); doi: https://doi.org/10.1177/2325967119860157.

  5. C. A. Haley and M. A. Zacchilli, “Pectoralis major injuries: evaluation and treatment,” Clin. Sports Med., 33, No. 4, 739–756 (2014); doi: https://doi.org/10.1016/j.csm.2014.06.005.

    Article  PubMed  Google Scholar 

  6. N. A. Marsh, J. G. Calcei, I. J. Antosh, and F. A. Cordasco, “Isolated tears of the sternocostal head of the pectoralis major muscle: surgical technique, clinical outcomes, and a modification of the Tietjen and Bak classification,” J. Shoulder Elbow Surg., 29, No. 7, 1359–1367 (2020); doi: https://doi.org/10.1016/j.jse.2019.11.024.

    Article  PubMed  Google Scholar 

  7. Y. K. Lee, M. R. Skalski, E. A. White, et al., “US and MR imaging of pectoralis major injuries,” Radiographics, 37, No. 1, 176–189 (2017); doi: https://doi.org/10.1148/rg.2017160070.

    Article  PubMed  Google Scholar 

  8. M. M. Chiavaras, J. A. Jacobson, J. Smith, and D. L. Dahm, “Pectoralis major tears: anatomy, classification, and diagnosis with ultrasound and MR imaging,” Skeletal Radiol., 44, No. 2, 157–164 (2015); doi: https://doi.org/10.1007/s00256-014-1990-7.

    Article  PubMed  Google Scholar 

  9. A. V. Gorkovenko, “Theoretical analysis of the peculiarities of motor control at generation of two-joint isometric efforts by the human upper limb,” Neurophysiology, 50, No. 4, 309–321 (2018); doi: https://doi.org/10.1007/s11062-018-9753-z.

    Article  Google Scholar 

  10. A. V. Gorkovenko, T. Tomiak, W. Pilewska, et al., “Synergetic control during generation of a maximal isometric effort by the human arm,” Neurophysiology, 52, No. 1, 49–59 (2020); doi: https://doi.org/10.1007/s11062-020-09850-9.

    Article  Google Scholar 

  11. T. Tomiak, A. Gorkovenko, A. Tal’nov, et al., “The averaged EMGs recorded from the arm muscles during bimanual “rowing” movements,” Front. Physiol., 6, No. 349 (2015); doi: https://doi.org/10.3389/fphys.2015.00349.

  12. T. Tomiak, T. Abramovych, A. Gorkovenko, et al., “The movement- and load-dependent differences in the EMG patterns of the human arm muscles during two-joint movements (a preliminary study),” Front. Physiol., 7, 218 (2016); doi: https://doi.org/10.3389/fphys.2016.00218.

    Article  PubMed  PubMed Central  Google Scholar 

  13. I. V. Vereshchaka, A. V. Gorkovenko, O. V. Lehedza, et al., “EMG patterns of the elbow- and shoulder-operating muscles in slow parafrontal upper limb movements under isotonic loading,” Neurophysiology, 50, No. 6, 466–474 (2018); doi: https://doi.org/10.1007/s11062-019-09779-8.

    Article  Google Scholar 

  14. A. I. Kostyukov, O. V. Lehedza, A. V. Gorkovenko, et al., “Hysteresis and synergy of the central commands to muscles participating in parafrontal upper limb movements,” Front. Physiol., 10, 1441 (2019); doi: https://doi.org/10.3389/fphys.2019.01441.

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. V. Gorkovenko, O. V. Lehedza, T. I. Abramovych, et al., “Evaluation of the complexity of control of simple linear hand movements using principal component analysis,” Neurophysiology, 51, No. 2, 132–140 (2019); doi: https://doi.org/10.1007/s11062-019-09804-w.

    Article  Google Scholar 

  16. M. Dornowski, O. V. Lehedza, V. S. Mishchenko, and A. V. Gorkovenko, “Hysteresis in EMG activity of muscles of the human upper limb at rotations of the isometric effort vector,” Neurophysiology, 49, No. 4, 308–312 (2017); doi: https://doi.org/10.1007/s11062-017-9688-9.

    Article  Google Scholar 

  17. T. Tomiak, A. V. Gorkovenko, V. S. Mishchenko, et al., “Control of the power of strokes and muscle activities in cyclic rowing movements (a research using rowing simulators),’ Neurophysiology, 48, No. 4, 297–311 (2016); doi: https://doi.org/10.1007/s11062-016-9602-x.

    Article  Google Scholar 

  18. T. I. Abramovich, A. V. Gorkovenko, I. V. Vereshchaka, et al., “Peculiarities of activation of human muscles in realization of cyclic bimanual movements with different organization of the cycles,” Neurophysiology, 48, No. 1, 31–42 (2016); doi: https://doi.org/10.1007/s11062-016-9566-x.

    Article  Google Scholar 

  19. M. Dornowski, A. Gorkovenko, T. Tomiak, et al., “Cyclic movement execution and its influence on motor programmes,” Ann. Agric. Environ. Med., 26, No. 2, 361–368 (2019); doi: https://doi.org/10.26444/aaem/94881.

    Article  PubMed  Google Scholar 

  20. M. Zasada, A. V. Gorkovenko, S. S. Strafun, et al., “A new approach to the study of two-joint upper limb movements in humans: independent programming of the positioning and force,” Neurophysiology, 52, No. 5, 397–406 (2021); doi: https://doi.org/10.1007/s11062-021-09896-3.

    Article  Google Scholar 

  21. H.-M. Lee, “Force direction and arm position affect contribution of clavicular and sternal parts of pectoralis major muscle during muscle strength testing,” J. Hand Ther., 32, No. 1, 71–79 (2019); doi: https://doi.org/10.1016/j.jht.2017.08.007.

    Article  PubMed  Google Scholar 

  22. T. Lulic-Kuryllo, C. K. Thompson, N. Jiang, et al., “Neural control of the healthy pectoralis major from low-to-moderate isometric contractions,” J. Neurophysiol., 126, No. 1, 213–226 (2021); doi: https://doi.org/10.1152/jn.00046.2021.

    Article  PubMed  Google Scholar 

  23. S. Montalvo, L. D. Gruber, M. P. Gonzalez, et al., “Effects of augmented eccentric load bench press training on one repetition maximum performance and electromyographic activity in trained powerlifters,” J. Strength. Cond. Res., 35, No. 6, 1512–1519 (2021); doi: https://doi.org/10.1519/JSC.0000000000004030.

    Article  PubMed  Google Scholar 

  24. T. Lulic-Kuryllo, F. Negro, N. Jiang, and C. R. Dickerson, “Standard bipolar surface EMG estimations mischaracterize pectoralis major activity in commonly performed tasks,” J. Electromyogr. Kinesiol., 56, 102509 (2021); doi: https://doi.org/10.1016/j.jelekin.2020.102509.

    Article  PubMed  Google Scholar 

  25. A. Tsoukos, L. E. Brown, G. Terzis, et al., “Changes in EMG and movement velocity during a set to failure against different loads in the bench press exercise,” Scand. J. Med. Sci. Sports, (2021); doi: https://doi.org/10.1111/sms.14027.

    Article  PubMed  Google Scholar 

  26. M. Krzysztofik, J. Jarosz, P. Matykiewicz, et al., “A comparison of muscle activity of the dominant and nondominant side of the body during low versus high loaded bench press exercise performed to muscular failure,” J. Electromyogr. Kinesiol., 56, 102513 (2021); doi: https://doi.org/10.1016/j.jelekin.2020.102513.

    Article  PubMed  Google Scholar 

  27. D. Rodriguez-Ridao, J. A. Antequera-Vique, I. Martin-Fuentes, and J. M. Muyor, “Effect of five bench inclinations on the electromyographic activity of the pectoralis major, anterior deltoid, and triceps brachii during the bench press exercise,” Int. J. Environ. Res. Public Health., 17, No. 19, 7339 (2020); doi: https://doi.org/10.3390/ijerph17197339.

  28. A. Golas, A. Maszczyk, P. Stastny, et al., ‘A new approach to EMG analysis of closed-circuit movements such as the flat bench press,” Sports (Basel), 6, No. 2, 27 (2018); doi: https://doi.org/10.3390/sports6020027.

    Article  Google Scholar 

  29. P. Stastny, A. Gołaś, D. Blazek, et al., “A systematic review of surface electromyography analyses of the bench press movement task,” PLoS One, 12, No. 2, e0171632 (2017); doi: https://doi.org/10.1371/journal.pone.0171632.

    Article  CAS  Google Scholar 

  30. S. P. Swinnen, “Intermanual coordination: from behavioural principles to neural-network interactions,” Nat. Rev. Neurosci., 3, No. 5, 348–359 (2002); doi: https://doi.org/10.1038/nrn807.

    Article  CAS  PubMed  Google Scholar 

  31. J. Boyles, S. Panzer, and C. H. Shea, “Increasingly complex bimanual multi-frequency coordination patterns are equally easy to perform with on-line relative velocity feedback,” Exp. Brain Res., 216, No. 4, 515–525 (2012); doi: https://doi.org/10.1007/s00221-011-2955-x.

    Article  PubMed  Google Scholar 

  32. E. G. James, “Nonstationarity of stable states in rhythmic bimanual coordination,” Motor Contr., 18, No. 2, 184–198 (2014); doi: https://doi.org/10.1123/mc.2013-0014.

    Article  Google Scholar 

  33. A. I. Kostyukov, “Muscle hysteresis and movement control: a theoretical study,” Neuroscience, 83, No. 1, 303–320 (1998); doi: https://doi.org/10.1016/s0306-4522(97)00379-5.

    Article  CAS  PubMed  Google Scholar 

  34. M. Lakie and K. S. Campbell, “Muscle thixotropy – where are we now?,” J. Appl. Physiol. (1985), 126, No. 6, 1790–1799 (2019); doi: https://doi.org/10.1152/japplphysiol.00788.2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorkovenko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulyk, Y.A., Strafun, S.S. & Gorkovenko, A.V. EMG Activity of the Shoulder Girdle Muscles of Humans after Surgical Refixation of the Ruptured m. Pectoralis Major Tendon under Conditions of Simple Bimanual Motor Acts. Neurophysiology 54, 59–72 (2022). https://doi.org/10.1007/s11062-023-09936-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-023-09936-0

Keywords

Navigation