Skip to main content

Advertisement

Log in

Excitability Characteristics of a Urinary Bladder Detrusor Smooth Muscle Cell as a Basis for Choosing Parameters of Rehabilitation Electrostimulation: A Simulation Study

  • Published:
Neurophysiology Aims and scope

Electrical stimulation targeted at smooth muscle cells (SMCs) of the urinary bladder detrusor (UBD) is used in a complex of rehabilitation procedures performed during treatment of neurourological diseases, in particular of those associated with the deficiency of М2/М3 acetylcholine receptors modifying the efficacy of parasympathetic innervation of these cells. The choice of parameters of such stimulation meets difficulties because of limited knowledge about biophysical and physiological processes induced in the stimulated cells. Certain information about such processes can be obtained with the use of a UBD SMC computer model built according to the data of biological experiments characterizing ion channels, ion exchangers, and other mechanisms regulating the intracellular calcium concentration ([Ca2+] i ) typical of the prototype. We explored the standard characteristics of the electrical excitability of the model SMC (“strength – duration” relationship for the threshold current and dynamics of the refractoriness following generation of action potentials, APs), as well as coupled changes in the membrane potential, partial transmembrane currents, and [Ca2+] i values evoked by depolarizing current pulses. In some computational experiments, such stimulation was performed under conditions of a higher conductivity of purinergic ionotropic receptor channels, thereby mimicking the action of purinomimetics. The model UBD SMC generated APs with parameters close to those of the prototype; AP generation was accompanied by long periods of absolute and relative refractoriness (up to 30 and 600 msec, respectively). The relative refractoriness period included an early phase (AP half-recovery lasting about 220 msec) and a late phase; each of these phases included “fast” and “slow” components with the time constants differing from each other by an order of magnitude. These time characteristics of the refractoriness were determined by the kinetic characteristics of the processes of activation/inactivation of voltage- and calcium-dependent ion channels and by those of the [Ca2+] i return to the basal level under the action of a set of Са2+ extrusion mechanisms. An important UBD SMC biophysical parameter was also the reversal potential (E Cl) for calcium-dependent chloride current (which is activated, in particular, due to the parasympathetic action on М2/М3 receptors). This current changed its main “depolarizing” direction to the hyperpolarizing one when the membrane potential exceeded the E Cl level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Lue, C. A. Gleason, G. B. Brock, et al., “Intraoperative electrostimulation of the cavernous nerve: technique, results and limitations,” J. Urol., 154, No. 4, 1426-1428 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. N. N. Hanna, J. Guillem, A. Dosoretz, et al., “Intraoperative parasympathetic nerve stimulation with tumescence monitoring during total mesorectal excision for rectal cancer,” J. Am. Coll. Surg., 195, No. 4, 506- 512 (2002).

    Article  PubMed  Google Scholar 

  3. G. M. da Silva, O. Zmora, L. Borjesson, et al., “The efficacy of a nerve stimulator (CaverMap) to enhance autonomic nerve identification and confirm nerve preservation during total mesorectal excision,” Dis. Colon. Rectum, 47, No. 12, 2032-2038 (2004).

    Article  PubMed  Google Scholar 

  4. W. Kneist, A. Heintz, and T. Junginger, “Intraoperative identification and neurophysiologic parameters to verify pelvic autonomic nerve function during total mesorectal excision for rectal cancer,” J. Am. Coll. Surg., 198, No.1, 59-66 (2004).

  5. W. Kneist and T. Junginger, “Validity of pelvic autonomic nerve stimulation with intraoperative monitoring of bladder function following to talmesorectal excision for rectal cancer,” Dis. Colon. Rectum, 48, No. 2, 262-269 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. A. Katahira, H. Niikura, Y. Kaiho, et al., “Intraoperative electrical stimulation of the pelvic splanchnic nerves during nerve-sparing radical hysterectomy,” Gynecol. Oncol., 98, No. 3, 462-466 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. І. О. Македонський, “Профілактика ураження органів сечостатевої системи під час хірургічної корекції аноректальних вад у дітей”, Урологія, 15, № 2 (57), 28-31 (2011).

  8. Пат. 63684 Україна, МПК (2011.01) A61B 17/00, Спосіб лікування аноректальних вад розвитку, І. О. Маке- донський, опубл. 10.10.11, бюл. № 19.

  9. І. О. Македонський, О. П. Піддубна, “Клінічні можливості систем з біологічним зворотним зв’язком у лікуванні нетримання сечі у дітей з екстрофією сечового міхура”, Мед. перспективи, 16, № 2, 59-65 (2011).

  10. I. A. Makedonsky, “Immunohystochemical investigation of the M2 and M3 muscarinic receptors in patients with bladder exstrophy,” Eur. Urol., 4, No. 2, 182 (2004).

  11. І. О. Македонський, “Морфологічні та функціональні властивості сечового міхура у дітей з аноректальними аномалiями”, Хірургія дит. віку, 4, № 4, 46-52 (2007).

  12. S. M. Korogod, A. V. Kochenov, and I. A. Makedonsky, “Biophysical mechanism of parasympathetic excitation of urinary bladder smooth muscle cells: a simulation study,” Neurophysiology, 46, No. 4, 199-205 (2014).

  13. Физиология человека, под ред. В. М. Покровского, Г. Ф. Коротько, Медицина, Москва (2003).

  14. Физиология человека, под ред. Р. Шмидта, Г. Тевса, Мир, Москва (2005).

  15. F. Martini, J. L. Nath, and E. F. Bartholomew, Fundamentals of Anatomy & Physiology, Publ. Pearson Educat. Inc., San Francisco (201 1).

  16. K. L. Hristov, M. Chen, W. F. Kellett, et al., “Largeconductance voltage- and Ca2+-activated K+ channels regulate human detrusor smooth muscle function,” Am. J. Physiol. Cell Physiol., 301, No. 4, 903-912 (201 1).

  17. G. Burnstock, “Purinergic signaling in the gastrointestinal tract and related organs in health and disease,” Purinerg. Signal., 10, No. 1, 3-50 (2014).

    Article  CAS  Google Scholar 

  18. С. М. Корогод, И. Б. Кулагина, В. И. Кукушка, “Кодирование электрических и синаптических воздействий выходным разрядом в нейронах с активными дендритами. Модельное исследование”, Нейрофизиология/Neurophysiology, 44, № 2, 24-31 (2012).

  19. C. H. Fry, G. Sui, and C. Wu, “T-type Ca2+ channels in non-vascular smooth muscles,” Cell Calcium, 40, No. 2, 231-239 (2006).

  20. N. J. Bramichand and A. F. Brading, “Electrical properties of smooth muscle in the guinea pig urinary bladder,” J. Physiol., 492, Part 1, 185-198 (1996).

  21. H. Hashitaniand and A. F. Brading, “Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder,” Br. J. Pharmacol., 140, No. 1, 159-169 (2003).

    Article  Google Scholar 

  22. J. Malysz, E. S. Rovnerand, and G. V. Petkov, “Single-channel biophysical and pharmacological characterizations of native human large-conductance calcium-activated potassium channels in freshly isolated detrusor smooth muscle cells,” Pflügers Arch., 465, No. 7, 965-975 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. S. Patel and R. Docampo, “Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling,” Trends Cell Biol., 20, No. 5, 277-286 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. J. Haslam and J. Laycock, Therapeutic Management of Incontinence and Pelvic Pain. Pelvic Organ Disorders, Springer-Verlag, London (2008).

    Google Scholar 

  25. W. E. Crill, “Persistent sodium current in mammalian central neurons,” Annu. Rev. Physiol., 58, 349-362 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. S. Dib-Hajj, J. A. Black, T. R. Cummins, and S. G. Waxman, “NaN/Nav1.9: a sodium channel with unique properties,” Trends Neurosci., 25, No. 5, 253-259 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. F. Maingret, B. Coste, F. Padilla, et al., “Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism,” J. Gen. Physiol., 131, No. 3, 21 1-225 (2008).

  28. S. M. Korogod, N. Osorio, I. B. Kulagina, and P. Delmas, “Dynamic excitation states and firing patterns are controlled by sodium channel kinetics in myenteric neurons: a simulation study,” Channels (Austin), 8, No. 6, 536-543 (2014).

  29. N. Osorio, S. Korogod, and P. Delmas, “Specialized functions of Nav1.5 and Nav1.9 channels in electrogenesis of myenteric neurons in intact mouse ganglia,” J. Neurosci., 34, No. 15, 5233-5244 (2014).

    Article  PubMed  Google Scholar 

  30. H. L. Tan, “Sodium channel variants in heart disease: expanding horizons,” J. Cardiovascul. Electrophysiol., 17, Suppl. 1, S151-S157 (2006).

    Article  Google Scholar 

  31. A. F. Brading and K. L. Brain, “Ion channel modulators and urinary tract function,” in: Urinary Tract (Handbook Exp. Pharmacol., Vol. 202), K.-E. Andersson and M. C. Michel (eds.), Springer-Verlag, Berlin, Heidelberg (2011), pp. 375-393.

  32. M. F. Shuba, “The effect of sodium-free and potassium free solutions, ionic current inhibitors and ouabainon electrophysiological properties of smooth muscle of guinea-pig ureter,” J. Physiol., 264, No. 3, 837-851 (1977).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. M. C. Michel and S. Parra, “Similarities and differences in the autonomic control of airway and urinary bladder smooth muscle,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 378, No. 2, 217-224 (2008).

    Article  CAS  Google Scholar 

  34. S. Kajioka, S. Nakayama, H. Asano, and A. F. Brading, “Involvement of ryanodine receptorsin muscarinic receptor-mediated membrane current oscillation in urinary bladder smooth muscle,” Am. J. Physiol. Cell Physiol., 288, No. 1, 100-108 (2005).

    Google Scholar 

  35. S. Nakayama and A. F. Brading, “Inactivation of the voltage-dependent Ca2+ channel current in smooth muscle cells isolated from the guinea-pig detrusor,” J. Physiol., 471, 107-127 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. J. Laforet, D. Guiraud, D. Andreu, et al., “Smooth muscle modeling and experimental identification: application to bladder isometric contraction,” J. Neural. Eng., 8, No. 3, 1-13 (201 1).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to А. V. Kochenov, Ye. P. Poddubnaya, I. A. Makedonsky or S. М. Korogod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochenov, А.V., Poddubnaya, Y.P., Makedonsky, I.A. et al. Excitability Characteristics of a Urinary Bladder Detrusor Smooth Muscle Cell as a Basis for Choosing Parameters of Rehabilitation Electrostimulation: A Simulation Study. Neurophysiology 47, 94–101 (2015). https://doi.org/10.1007/s11062-015-9504-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9504-3

Keywords

Navigation