Skip to main content

Advertisement

Log in

Caspase-3 in glioma indicates an unfavorable prognosis by involving surrounding angiogenesis and tumor cell repopulation

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Aim

Effective biomarkers for estimating glioma prognosis are deficient. Canonically, caspase-3 acts as an “apoptosis executioner”. However, its prognostic role in glioma and mechanistic effects on prognosis remain unclear.

Methods

With glioma tissue microarrays, the prognostic roles of cleaved caspase-3 and its association with angiogenesis were explored. Next, by analyzing the mRNA microarray data from the CGGA, the prognostic role of CASP3 expression and correlations between CASP3 and markers of glioma angiogenesis and proliferation were investigated. To biologically interpret the prognostic role of caspase-3 in glioma, the influence of caspase-3 on surrounding angiogenesis and glioma cell repopulation was investigated with an in vitro cell co-culture model, which comprises irradiated U87 cells and un-irradiated firefly luciferase (Fluc)-labeled HUVEC (HUVEC-Fluc) or U87 (U87-Fluc) cells. The over-expressed dominant-negative caspase-3 was used to suppress normal caspase-3 activity.

Results

High levels of cleaved caspase-3 expression were associated with poor survival outcomes in glioma patients. Higher microvessel density was observed in patients with high levels of cleaved caspase-3 expression. By mining the microarray data in CGGA, it was revealed that higher CASP3 expression was found in glioma patients with lower Karnofsky Performance score, higher WHO grade, malignant histological subtype, wild-type IDH. Higher CASP3 expression indicated a worse survival rate in glioma patients. Patients with high CASP3 expression and negative IDH mutation showed the worst survival rate. Positive correlations were found between CASP3 and markers of tumor angiogenesis and proliferation. Subsequent data based on an in vitro cell co-culture model revealed that caspase-3 in irradiated glioma cells mediated pro-angiogenic and repopulation-promoting effects via regulating COX-2 signaling. With glioma tissue microarrays, high levels of COX-2 expression showed inferior survival outcomes in glioma patients. Glioma patients with high levels of cleaved caspase-3 and COX-2 expression showed the worst survival outcomes.

Conclusion

This study innovatively identified an unfavorable prognostic role of caspase-3 in glioma. The pro-angiogenic and repopulation-prompting effects of caspase-3/COX-2 signaling may explain its unfavorable prognostic role and offer novel insights into therapy sensitization and curative effect prediction of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ostrom Q, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan J (2021) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-oncology 23:iii1–iii105. https://doi.org/10.1093/neuonc/noab200

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis D, Ohgaki H, Wiestler O, Cavenee W, Burger P, Jouvet A, Scheithauer B, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis D, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee W, Ohgaki H, Wiestler O, Kleihues P, Ellison D (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  4. Louis D, Perry A, Wesseling P, Brat D, Cree I, Figarella-Branger D, Hawkins C, Ng H, Pfister S, Reifenberger G, Soffietti R, von Deimling A, Ellison D (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-oncology 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nicholson J, Fine H (2021) Diffuse glioma heterogeneity and its therapeutic implications. Cancer Discov 11:575–590. https://doi.org/10.1158/2159-8290.cd-20-1474

    Article  CAS  PubMed  Google Scholar 

  6. Andersen B, Faust Akl C, Wheeler M, Chiocca E, Reardon D, Quintana F (2021) Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat Rev Cancer 21:786–802. https://doi.org/10.1038/s41568-021-00397-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frattini V, Trifonov V, Chan J, Castano A, Lia M, Abate F, Keir S, Ji A, Zoppoli P, Niola F, Danussi C, Dolgalev I, Porrati P, Pellegatta S, Heguy A, Gupta G, Pisapia D, Canoll P, Bruce J, McLendon R, Yan H, Aldape K, Finocchiaro G, Mikkelsen T, Privé G, Bigner D, Lasorella A, Rabadan R, Iavarone A (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149. https://doi.org/10.1038/ng.2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jansen M, Yip S, Louis D (2010) Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol 9:717–726. https://doi.org/10.1016/s1474-4422(10)70105-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50:1352–1364. https://doi.org/10.1016/j.immuni.2019.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O’Sullivan B, He Z, Peng Y, Tan AC, Zhou L, Shen J, Han G, Wang XJ, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li CY (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17:860–866. https://doi.org/10.1038/nm.2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flanagan L, Meyer M, Fay J, Curry S, Bacon O, Duessmann H, John K, Boland KC, McNamara DA, Kay EW, Bantel H, Schulze-Bergkamen H, Prehn JH (2016) Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell Death Dis 7:e2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Z, Wang M, Zhou L, Feng X, Cheng J, Yu Y, Gong Y, Zhu Y, Li C, Tian L, Huang Q (2015) Increased HMGB1 and cleaved caspase-3 stimulate the proliferation of tumor cells and are correlated with the poor prognosis in colorectal cancer. J Exp Clin Cancer Res 34:51. https://doi.org/10.1186/s13046-015-0166-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Estrov Z, Thall PF, Talpaz M, Estey EH, Kantarjian HM, Andreeff M, Harris D, Van Q, Walterscheid M, Kornblau SM (1998) Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia. Blood 92:3090–3097

    Article  CAS  PubMed  Google Scholar 

  14. Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, Martin SG (2017) Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis 22:357–368. https://doi.org/10.1007/s10495-016-1323-5

    Article  CAS  PubMed  Google Scholar 

  15. Huang KH, Fang WL, Li AF, Liang PH, Wu CW, Shyr YM, Yang MH (2018) Caspase-3, a key apoptotic protein, as a prognostic marker in gastric cancer after curative surgery. Int J Surg 52:258–263. https://doi.org/10.1016/j.ijsu.2018.02.055

    Article  PubMed  Google Scholar 

  16. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3:ra13. https://doi.org/10.1126/scisignal.2000634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laplante P, Sirois I, Raymond MA, Kokta V, Beliveau A, Prat A, Pshezhetsky AV, Hebert MJ (2010) Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis. Cell Death Differ 17:291–303. https://doi.org/10.1038/cdd.2009.124

    Article  CAS  PubMed  Google Scholar 

  18. Kennedy OD, Laudier DM, Majeska RJ, Sun HB, Schaffler MB (2014) Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo. Bone 64:132–137. https://doi.org/10.1016/j.bone.2014.03.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, He Y, Li F, Huang Q, Kato TA, Hall RP, Li CY (2015) Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell 58:284–296. https://doi.org/10.1016/j.molcel.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li F, He Z, Shen J, Huang Q, Li W, Liu X, He Y, Wolf F, Li CY (2010) Apoptotic caspases regulate induction of iPSCs from human fibroblasts. Cell Stem Cell 7:508–520. https://doi.org/10.1016/j.stem.2010.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ng WL, Huang Q, Liu X, Zimmerman M, Li F, Li CY (2013) Molecular mechanisms involved in tumor repopulation after radiotherapy. Transl Cancer Res 2:442–448. https://doi.org/10.3978/j.issn.2218-676X.2013.10.03

    Article  CAS  PubMed  Google Scholar 

  22. Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5:516–525. https://doi.org/10.1038/nrc1650

    Article  CAS  PubMed  Google Scholar 

  23. Feng X, Zhang L, Ke S, Liu T, Hao L, Zhao P, Tu W, Cang S (2020) High expression of GPNMB indicates an unfavorable prognosis in glioma: combination of data from the GEO and CGGA databases and validation in tissue microarray. Oncol Lett 20:2356–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saggioro FP, Neder L, Stavale JN, Paixao-Becker AN, Malheiros SM, Soares FA, Pittella JE, Matias CC, Colli BO, Carlotti CG Jr, Franco M (2014) Fas, FasL, and cleaved caspases 8 and 3 in glioblastomas: a tissue microarray-based study. Pathol Res Pract 210:267–273. https://doi.org/10.1016/j.prp.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  25. Wendum D, Svrcek M, Rigau V, Boelle PY, Sebbagh N, Parc R, Masliah J, Trugnan G, Flejou JF (2003) COX-2, inflammatory secreted PLA2, and cytoplasmic PLA2 protein expression in small bowel adenocarcinomas compared with colorectal adenocarcinomas. Mod Pathol 16:130–136. https://doi.org/10.1097/01.MP.0000052101.58988.1F

    Article  PubMed  Google Scholar 

  26. Yan W, Zhang W, You G, Zhang J, Han L, Bao Z, Wang Y, Liu Y, Jiang C, Kang C, You Y, Jiang T (2012) Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the Chinese Glioma Cooperative Group. Neuro Oncol 14:1432–1440. https://doi.org/10.1093/neuonc/nos263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng X, Tian L, Zhang Z, Yu Y, Cheng J, Gong Y, Li CY, Huang Q (2015) Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis. Oncotarget 6:32353–32367. https://doi.org/10.18632/oncotarget.5898

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng J, He S, Wang M, Zhou L, Zhang Z, Feng X, Yu Y, Ma J, Dai C, Zhang S, Sun L, Gong Y, Wang Y, Zhao M, Luo Y, Liu X, Tian L, Li C, Huang Q (2019) The Caspase-3/PKCδ/Akt/VEGF-A signaling pathway mediates tumor repopulation during radiotherapy. Clin Cancer Res 25:3732–3743. https://doi.org/10.1158/1078-0432.ccr-18-3001

    Article  CAS  PubMed  Google Scholar 

  29. Cheng J, Tian L, Ma J, Gong Y, Zhang Z, Chen Z, Xu B, Xiong H, Li C, Huang Q (2015) Dying tumor cells stimulate proliferation of living tumor cells via caspase-dependent protein kinase Cdelta activation in pancreatic ductal adenocarcinoma. Mol Oncol 9:105–114. https://doi.org/10.1016/j.molonc.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  30. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622. https://doi.org/10.1038/nrn2175

    Article  CAS  PubMed  Google Scholar 

  31. Pirozzi C, Yan H (2021) The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 18:645–661. https://doi.org/10.1038/s41571-021-00521-0

    Article  CAS  PubMed  Google Scholar 

  32. Campos B, Olsen LR, Urup T, Poulsen HS (2016) A comprehensive profile of recurrent glioblastoma. Oncogene 35:5819–5825. https://doi.org/10.1038/onc.2016.85

    Article  CAS  PubMed  Google Scholar 

  33. Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang Z, Yang X, Xu B, Liu X, Li CY, Tian L, Huang Q (2017) Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett 385:12–20. https://doi.org/10.1016/j.canlet.2016.10.042

    Article  CAS  PubMed  Google Scholar 

  34. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Investig 120:694–705. https://doi.org/10.1172/JCI40283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tseng D, Vasquez-Medrano DA, Brown JM (2011) Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br J Cancer 104:1805–1809. https://doi.org/10.1038/bjc.2011.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tabouret E, Tchoghandjian A, Denicolai E, Delfino C, Metellus P, Graillon T, Boucard C, Nanni I, Padovani L, Ouafik L, Figarella-Branger D, Chinot O (2015) Recurrence of glioblastoma after radio-chemotherapy is associated with an angiogenic switch to the CXCL12-CXCR4 pathway. Oncotarget 6:11664–11675. https://doi.org/10.18632/oncotarget.3256

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang W, Wang X, Chen Y, Zhang J, Chen Y, Lin Z (2015) CXCL12 and CXCR4 as predictive biomarkers of glioma recurrence pattern after total resection. Pathol Biol 63:190–198. https://doi.org/10.1016/j.patbio.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  38. Li B, Blanc JM, Sun Y, Yang L, Zaorsky NG, Giacalone NJ, Torossian A, Lu B (2014) Assessment of M867, a selective caspase-3 inhibitor, in an orthotopic mouse model for non-small cell lung carcinoma. Am J Cancer Res 4:161–171

    PubMed  PubMed Central  Google Scholar 

  39. Ma HI, Chiou SH, Hueng DY, Tai LK, Huang PI, Kao CL, Chen YW, Sytwu HK (2011) Celecoxib and radioresistant glioblastoma-derived CD133+ cells: improvement in radiotherapeutic effects. J Neurosurg 114:651–662

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was funded by the National Natural Science Foundation of China (No. 81803048 to X.F., No. 81972887 to J.C.), the Natural Science Foundation of Shanghai (No. 21ZR1451100 to J.C.), the Shanghai Pujiang Program (No. 2021PJD056 to J.C.), and the Shanghai "Rising Stars of Medical Talents" Youth Development Program (No. SHWRS (2021)_099 to J.C.).

Author information

Authors and Affiliations

Authors

Contributions

J. C. and X. F. conceived this work and designed the experiments; X. F., F. Z., L. D., X. L., L. S., and L. H. conducted the experiments; X. F. and S. C. conducted data analysis and interpretation; X. F. wrote the manuscript and J. C. and S. C. revised it; J. C. and S. C. supervised the whole project.

Corresponding authors

Correspondence to Shundong Cang or Jin Cheng.

Ethics declarations

Conflict of interest

All authors declare no competing interests.

Ethics approval and patient consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhu, F., Dai, L. et al. Caspase-3 in glioma indicates an unfavorable prognosis by involving surrounding angiogenesis and tumor cell repopulation. J Neurooncol 163, 313–325 (2023). https://doi.org/10.1007/s11060-023-04339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04339-x

Keywords

Navigation