Skip to main content
Log in

Contemporary management of pediatric spinal tumors: a single institute's experience in Taiwan in the modern era

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Pediatric spinal tumors are unique pathologies treated by pediatric neurosurgeons. Special attention is required for the preservation of neural function and bony alignment. We reported our experience in the management of these challenging lesions.

Methods

A total of 75 pediatric patients with spinal tumors treated at the National Taiwan University Hospital from 1998 to 2018 were identified retrospectively. Clinical data, radiographic image, and pathological report were reviewed for analysis.

Results

There were 37 females and 38 males. The median age was 9 years. Thirty-eight tumors (50.6%) were extradural, 20 (26.7%) intradural extramedullary, and 17 (22.6%) intramedullary. The most common pathologies were glioma, ependymoma, and neuroblastoma. The rate of total and subtotal resection was 45.3% and 21.3%. Thirty-four patients (45.3%) required post-operative adjuvant therapy. Eight patients (10.6%) with spinal deformity had simultaneous tumor excision and spinal fusion surgery. Additional six (8%) patients had subsequent spinal fixation and fusion for deformity after primary tumor operation. Eighty-four percent of patients were ambulatory 3 years after operation. For patients with intradural extramedullary and intramedullary tumors, worse survival outcome was associated with tumor derived from CSF seeding and cranial involvement of spinal tumor, while poorer functional outcome was correlated with cranial involvement and adjuvant therapy with chemotherapy or radiotherapy.

Conclusions

Pediatric spinal tumor surgery carries low surgical morbidity and mortality under current standard of neurosurgical practice. Post-operative adjuvant therapy is required for nearly half of the cases. Spinal deformity requires special attention and sometimes surgical correction. Contemporary management of pediatric spinal tumors enables effective ablation of the lesion and delivers favorable outcome for the majority of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL, Stearns DS, Wolff JE, Wolinsky Y, Letterio JJ, Barnholtz-Sloan JS (2015) Alex's Lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 10):x1–x36. https://doi.org/10.1093/neuonc/nou327

    Article  PubMed  Google Scholar 

  2. McGirt MJ, Chaichana KL, Atiba A, Attenello F, Woodworth GF, Jallo GI (2008) Neurological outcome after resection of intramedullary spinal cord tumors in children. Child's Nerv Syst 24:93–97. https://doi.org/10.1007/s00381-007-0446-y

    Article  Google Scholar 

  3. Garces-Ambrossi GL, McGirt MJ, Mehta VA, Sciubba DM, Witham TF, Bydon A, Wolinksy JP, Jallo GI, Gokaslan ZL (2009) Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases. J Neurosurg Spine 11:591–599. https://doi.org/10.3171/2009.4.SPINE08159

    Article  PubMed  Google Scholar 

  4. Ahmed R, Menezes AH, Awe OO, Torner JC (2014) Long-term disease and neurological outcomes in patients with pediatric intramedullary spinal cord tumors: clinical article. J Neurosurg 13:600–612. https://doi.org/10.3171/2014.1.PEDS13316

    Article  Google Scholar 

  5. Ahmed R, Menezes AH, Torner JC (2016) Role of resection and adjuvant therapy in long-term disease outcomes for low-grade pediatric intramedullary spinal cord tumors. J Neurosurg 18:594–601. https://doi.org/10.3171/2016.5.PEDS15356

    Article  Google Scholar 

  6. McGirt MJ, Chaichana KL, Atiba A, Attenello F, Yao KC, Jallo GI (2008) Resection of intramedullary spinal cord tumors in children: assessment of long-term motor and sensory deficits. J Neurosurg 1:63–67. https://doi.org/10.3171/PED-08/01/063

    Article  Google Scholar 

  7. Nakamura M, Ishii K, Watanabe K, Tsuji T, Takaishi H, Matsumoto M, Toyama Y, Chiba K (2008) Surgical treatment of intramedullary spinal cord tumors: prognosis and complications. Spinal Cord 46:282–286. https://doi.org/10.1038/sj.sc.3102130

    Article  CAS  PubMed  Google Scholar 

  8. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58:1129–1143. https://doi.org/10.1227/01.NEU.0000215948.97195.58. (discussion 1129–1143)

    Article  PubMed  Google Scholar 

  9. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381. https://doi.org/10.1016/j.jbi.2008.08.010

    Article  PubMed  Google Scholar 

  10. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN, Consortium RE (2019) The REDCap consortium: building an international community of software platform partners. J Biomed Inform 95:103208. https://doi.org/10.1016/j.jbi.2019.103208

    Article  PubMed  Google Scholar 

  11. Nicholas MW, Corey R, Meghan M (2015) Spinal extradural neoplasms and intradural extramedullary neoplasms. In: Albright AL, Pollack PD, Adelson PD (eds) Principles and practice of pediatric neurosurgery, 3rd edn. Thieme Medical Publishers, New York, pp 594–604

    Google Scholar 

  12. Wang ZY, Sun JJ, Xie JC, Li ZD, Ma CC, Liu B, Chen XD, Liao HI, Yu T, Zhang J (2012) Comparative analysis on the diagnosis and treatments of multisegment intramedullary spinal cord tumors between the different age groups. Neurosurg Rev 35:85–92. https://doi.org/10.1007/s10143-011-0345-2

    Article  PubMed  Google Scholar 

  13. Bansal S, Suri A, Borkar SA, Kale SS, Singh M, Mahapatra AK (2012) Management of intramedullary tumors in children: Analysis of 82 operated cases. Child's Nerv Syst 28:2063–2069. https://doi.org/10.1007/s00381-012-1835-4

    Article  Google Scholar 

  14. Hayden Gephart MG, Lober RM, Arrigo RT, Zygourakis CC, Guzman R, Boakye M, Edwards MSB, Fisher PG (2012) Trends in the diagnosis and treatment of pediatric primary spinal cord tumors: clinical article. J Neurosurg 10:555–559. https://doi.org/10.3171/2012.9.PEDS1272

    Article  Google Scholar 

  15. Sciubba DM, Liang D, Kothbauer KF, Noggle JC, Jallo GI (2009) The evolution of intramedullary spinal cord tumor surgery. Neurosurgery 65:84–91. https://doi.org/10.1227/01.NEU.0000345628.39796.40. (discussion 91–82)

    Article  PubMed  Google Scholar 

  16. Epstein FJ, Farmer JP (1991) Trends in surgery: laser surgery, use of the cavitron, and debulking surgery. Neurol Clin 9:307–315

    Article  CAS  Google Scholar 

  17. Regelsberger J, Fritzsche E, Langer N, Westphal M (2005) Intraoperative sonography of intra- and extramedullary tumors. Ultrasound Med Biol 31:593–598. https://doi.org/10.1016/j.ultrasmedbio.2005.01.016

    Article  PubMed  Google Scholar 

  18. Epstein FJ, Farmer JP, Schneider SJ (1991) Intraoperative ultrasonography: an important surgical adjunct for intramedullary tumors. J Neurosurg 74:729–733. https://doi.org/10.3171/jns.1991.74.5.0729

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC (2009) Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus 27:E6. https://doi.org/10.3171/2009.8.FOCUS09150

    Article  PubMed  Google Scholar 

  20. Daniel JW, Botelho RV, Milano JB, Dantas FR, Onishi FJ, Neto ER, Bertolini EF, Borgheresi MAD, Joaquim AF (2018) Intraoperative neurophysiological monitoring in spine surgery: a systematic review and meta-analysis. Spine (Phila Pa 1976) 43:1154–1160. https://doi.org/10.1097/BRS.0000000000002575

    Article  Google Scholar 

  21. Kumar R, Singh V (2005) Benign intradural extramedullary masses in children of Northern India. Pediatr Neurosurg 41:22–28. https://doi.org/10.1159/000084861

    Article  PubMed  Google Scholar 

  22. Kumar R, Giri PJ (2008) Pediatric extradural spinal tumors. Pediatr Neurosurg 44:181–189. https://doi.org/10.1159/000120147

    Article  PubMed  Google Scholar 

  23. Bouffet E, Marec-Berard P, Thiesse P, Carrie C, Risk T, Jouvet A, Brunat-Mentigny M, Mottolese C (1997) Spinal cord compression by secondary epi- and intradural metastases in childhood. Child's Nerv Syst 13:383–387. https://doi.org/10.1007/s003810050105

    Article  CAS  Google Scholar 

  24. Yang T, Wu L, Yang C, Deng X, Xu Y (2014) Clinical features and long-term outcomes of intraspinal ependymomas in pediatric patients. Child's Nerv Syst 30:2073–2081. https://doi.org/10.1007/s00381-014-2528-y

    Article  Google Scholar 

  25. Benesch M, Weber-Mzell D, Gerber NU, Von Hoff K, Deinlein F, Krauss J, Warmuth-Metz M, Kortmann RD, Pietsch T, Driever PH, Quehenberger F, Urban C, Rutkowski S (2010) Ependymoma of the spinal cord in children and adolescents: a retrospective series from the HIT database: clinical article. J Neurosurg 6:137–144. https://doi.org/10.3171/2010.5.PEDS09553

    Article  Google Scholar 

  26. Szathmari A, Zerah M, Vinchon M, Dufour C, Gimbert E, Di Rocco F, Chabaud S, Conter C, Mottolese C, Frappaz D (2019) Ependymoma of the spinal cord in children: a retrospective french study. World Neurosurg 126:e1035–e1041. https://doi.org/10.1016/j.wneu.2019.03.033

    Article  PubMed  Google Scholar 

  27. Abd-El-Barr MM, Huang KT, Chi JH (2016) Infiltrating spinal cord astrocytomas: epidemiology, diagnosis, treatments and future directions. J Clin Neurosci 29:15–20. https://doi.org/10.1016/j.jocn.2015.10.048

    Article  PubMed  Google Scholar 

  28. Scheinemann K, Bartels U, Huang A, Hawkins C, Kulkarni AV, Bouffet E, Tabori U (2009) Survival and functional outcome of childhood spinal cord low-grade gliomas. J Neurosurg 4:254–261. https://doi.org/10.3171/2009.4.PEDS08411

    Article  Google Scholar 

  29. Townsend N, Handler M, Fleitz J, Foreman N (2004) Intramedullary spinal cord astrocytomas in children. Pediatr Blood Cancer 43:629–632. https://doi.org/10.1002/pbc.20082

    Article  PubMed  Google Scholar 

  30. Guss ZD, Moningi S, Jallo GI, Cohen KJ, Wharam MD, Terezakis SA (2013) Management of pediatric spinal cord astrocytomas: outcomes with adjuvant radiation. Int J Radiat Oncol Biol Phys 85:1307–1311. https://doi.org/10.1016/j.ijrobp.2012.11.022

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tsai CJ, Wang Y, Allen PK, Mahajan A, McCutcheon IE, Rao G, Rhines LD, Tatsui CE, Armstrong TS, Maor MH, Chang EL, Brown PD, Li J (2014) Outcomes after surgery and radiotherapy for spinal myxopapillary ependymoma: update of the MD anderson cancer center experience. Neurosurgery 75:205–214. https://doi.org/10.1227/NEU.0000000000000408

    Article  PubMed  Google Scholar 

  32. Teo WY, Chintagumpala M, Okcu MF, Dauser RC, Mahajan A, Adesina AM, Whitehead WE, Jea A, Bollo R, Paulino AC (2013) A retrospective analysis of the patterns of failure in pediatric myxopapillary ependymoma. J Radiat Oncol 2:21–26. https://doi.org/10.1007/s13566-012-0066-3

    Article  Google Scholar 

  33. Keil VC, Schmitt AJ, Martin SC, Cadoux-Hudson TA, Pereira EA (2016) Optimising treatment strategies in spinal ependymoma based on 20 years of experience at a single centre. J Clin Neurosci 29:52–58. https://doi.org/10.1016/j.jocn.2016.01.003

    Article  PubMed  Google Scholar 

  34. Akyurek S, Chang EL, Yu TK, Little D, Allen PK, McCutcheon I, Mahajan A, Maor MH, Woo SY (2006) Spinal myxopapillary ependymoma outcomes in patients treated with surgery and radiotherapy at M.D. Anderson Cancer Center. J Neuro-Oncol 80:177–183. https://doi.org/10.1007/s11060-006-9169-2

    Article  Google Scholar 

  35. Neumann JE, Spohn M, Obrecht D, Mynarek M, Thomas C, Hasselblatt M, Dorostkar MM, Wefers AK, Frank S, Monoranu CM, Koch A, Witt H, Kool M, Pajtler KW, Rutkowski S, Glatzel M, Schuller U (2019) Molecular characterization of histopathological ependymoma variants. Acta Neuropathol. https://doi.org/10.1007/s00401-019-02090-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. Witt H, Gramatzki D, Hentschel B, Pajtler KW, Felsberg J, Schackert G, Loffler M, Capper D, Sahm F, Sill M, von Deimling A, Kool M, Herrlinger U, Westphal M, Pietsch T, Reifenberger G, Pfister SM, Tonn JC, Weller M (2018) DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro Oncol 20:1616–1624. https://doi.org/10.1093/neuonc/noy118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saito R, Kumabe T, Jokura H, Shirane R, Yoshimoto T (2003) Symptomatic spinal dissemination of malignant astrocytoma. J Neuro-Oncol 61:227–235. https://doi.org/10.1023/A:1022536828345

    Article  Google Scholar 

  38. Jallo GI, Freed D, Epstein F (2003) Intramedullary spinal cord tumors in children. Child's Nerv Syst 19:641–649. https://doi.org/10.1007/s00381-003-0820-3

    Article  Google Scholar 

  39. Ahmed R, Menezes AH, Awe OO, Mahaney KB, Torner JC, Weinstein SL (2014) Long-term incidence and risk factors for development of spinal deformity following resection of pediatric intramedullary spinal cord tumors: clinical article. J Neurosurg 13:613–621. https://doi.org/10.3171/2014.1.PEDS13317

    Article  Google Scholar 

  40. Yao KC, McGirt MJ, Chaichana KL, Constantini S, Jallo GI (2007) Risk factors for progressive spinal deformity following resection of intramedullary spinal cord tumors in children: an analysis of 161 consecutive cases. J Neurosurg 107:463–468

    PubMed  Google Scholar 

  41. McGirt MJ, Chaichana KL, Atiba A, Bydon A, Witham TF, Yao KC, Jallo GI (2008) Incidence of spinal deformity after resection of intramedullary spinal cord tumors in children who underwent laminectomy compared with laminoplasty. J Neurosurg 1:57–62. https://doi.org/10.3171/PED-08/01/057

    Article  Google Scholar 

  42. McGirt MJ, Garcés-Ambrossi GL, Parker SL, Sciubba DM, Bydon A, Wolinksy JP, Gokaslan ZL, Jallo G, Witham TF (2010) Short-term progressive spinal deformity following laminoplasty versus laminectomy for resection of intradural spinal tumors: analysis of 238 patients. Neurosurgery 66:1005–1012. https://doi.org/10.1227/01.NEU.0000367721.73220.C9

    Article  PubMed  Google Scholar 

  43. Hsu W, Pradilla G, Constantini S, Jallo GI (2009) Surgical considerations of spinal ependymomas in the pediatric population. Child's Nerv Syst 25:1253–1259. https://doi.org/10.1007/s00381-009-0882-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge statistical assistance provided by the Center of Statistical Consultation and Research in the Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hung Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the research ethics committee of the National Taiwan University Hospital, Taipei, Taiwan.

Informed consent

A waiver of consent was obtained from the research ethics committee for this retrospective, minimal-risk study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, SC., Kuo, MF., Lai, DM. et al. Contemporary management of pediatric spinal tumors: a single institute's experience in Taiwan in the modern era. J Neurooncol 146, 501–511 (2020). https://doi.org/10.1007/s11060-020-03400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03400-3

Keywords

Navigation