Skip to main content

Advertisement

Log in

Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We have previously demonstrated that bortezomib, a 26S proteasome inhibitor, effectively inhibits medulloblastoma growth in vivo in a genetically engineered Ptch1, p53 mouse model; however, bortezomib is also associated clinically with severe peripheral neuropathy, which would be disadvantageous for patients with central nervous system malignancy. The purpose of this study was to determine the mechanism of bortezomib efficacy in medulloblastoma in order to replicate more specifically the therapeutic advantage of targeting the ubiquitin-proteosome system. In our studies of upstream components of the ubiquitin–proteasome system, we identified the pro-apoptotic protein NOXA as a post-translationally modified target that is stabilized by bortezomib and induces caspase cleavage in the context of reactive oxidative stress induced cell death. These preclinical results may apply to the sizable fraction of Shh-driven human medulloblastoma and perhaps other medulloblastoma subtypes, independent of p53 status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rutkowski S, Gerber NU, von Hoff K, Gnekow A, Bode U, Graf N, Berthold F, Henze G, Wolff JE, Warmuth-Metz M, Soerensen N, Emser A, Ottensmeier H, Deinlein F, Schlegel PG, Kortmann RD, Pietsch T, Kuehl J (2009) Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro Oncol 11:201–210. doi:10.1215/15228517-2008-084

    Article  PubMed  CAS  Google Scholar 

  2. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer L, LaFond D, Donahue BR, Marymont MH, Muraszko K, Langston J, Sposto R (2006) Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 24:4202–4208. doi:10.1200/JCO.2006.06.4980

    Article  PubMed  CAS  Google Scholar 

  3. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ, Fouladi M, Broniscer A, Krance R, Hale GA, Stewart CF, Dauser R, Sanford RA, Fuller C, Lau C, Boyett JM, Wallace D, Gilbertson RJ (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7:813–820. doi:10.1016/S1470-2045(06)70867-1

    Article  PubMed  Google Scholar 

  4. Lafay-Cousin L, Strother D (2009) Current treatment approaches for infants with malignant central nervous system tumors. Oncologist 14:433–444. doi:10.1634/theoncologist.2008-0193

    Article  PubMed  Google Scholar 

  5. Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    PubMed  Google Scholar 

  6. Taniguchi E, Cho MJ, Arenkiel BR, Hansen MS, Rivera OJ, McCleish AT, Qualman SJ, Guttridge DC, Scott MP, Capecchi MR, Keller C (2009) Bortezomib reverses a post-translational mechanism of tumorigenesis for patched1 haploinsufficiency in medulloblastoma. Pediatr Blood Cancer 53:136–144. doi:10.1002/pbc.21968

    Article  PubMed  Google Scholar 

  7. Cavaletti G, Jakubowiak AJ (2010) Peripheral neuropathy during bortezomib treatment of multiple myeloma: a review of recent studies. Leuk Lymphoma 51:1178–1187. doi:10.3109/10428194.2010.483303

    Article  PubMed  CAS  Google Scholar 

  8. Uziel T, Zindy F, Xie S, Lee Y, Forget A, Magdaleno S, Rehg JE, Calabrese C, Solecki D, Eberhart CG, Sherr SE, Plimmer S, Clifford SC, Hatten ME, McKinnon PJ, Gilbertson RJ, Curran T, Sherr CJ, Roussel MF (2005) The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes Dev 19:2656–2667. doi:10.1101/gad.1368605

    Article  PubMed  CAS  Google Scholar 

  9. Hosoyama T, Nishijo K, Garcia MM, Schaffer BS, Ohshima-Hosoyama S, Prajapati SI, Davis MD, Grant WF, Scheithauer BW, Marks DL, Rubin BP, Keller C (2010) A postnatal Pax7+ progenitor gives rise to pituitary. Adenomas Genes Cancer 1:388–402. doi:10.1177/1947601910370979

    Article  CAS  Google Scholar 

  10. Prajapati SI, Kilcoyne A, Samano AK, Green DP, McCarthy SD, Blackman BA, Brady MM, Zarzabal LA, Tatiparthy AK, Sledz TJ, Duong T, Ohshima-Hosoyama S, Giles FJ, Michalek JE, Rubin BP, Keller C (2010) MicroCT-based virtual histology evaluation of preclinical medulloblastoma. Mol Imaging Biol doi:10.1007/s11307-010-0372-3

  11. Samano AK, Ohshima-Hosoyama S, Whitney TG, Prajapati SI, Kilcoyne A, Taniguchi E, Morgan WW, Nelon LD, Lin AL, Togao O, Jung I, Rubin BP, Nowak BM, Duong TQ, Keller C (2010) Functional evaluation of therapeutic response for a mouse model of medulloblastoma. Transgenic Res 19:829–840. doi:10.1007/s11248-010-9361-1

    Article  PubMed  CAS  Google Scholar 

  12. Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T, Pujara K, Stinson J, Callahan CA, Tang T, Bazan JF, Kan Z, Seshagiri S, Hann CL, Gould SE, Low JA, Rudin CM, de Sauvage FJ (2009) Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326:572–574. doi:10.1126/science.1179386

    Article  PubMed  CAS  Google Scholar 

  13. Sturla LM, Cowan CW, Guenther L, Castellino RC, Kim JY, Pomeroy SL (2005) A novel role for extracellular signal-regulated kinase 5 and myocyte enhancer factor 2 in medulloblastoma cell death. Cancer Res 65:5683–5689. doi:10.1158/0008-5472.CAN-04-2283

    Article  PubMed  CAS  Google Scholar 

  14. Baou M, Kohlhaas SL, Butterworth M, Vogler M, Dinsdale D, Walewska R, Majid A, Eldering E, Dyer MJ, Cohen GM (2010) Role of NOXA and its ubiquitination in proteasome inhibitor-induced apoptosis in chronic lymphocytic leukemia cells. Haematologica 95:1510–1518. doi:10.3324/haematol.2010.022368

    Article  PubMed  Google Scholar 

  15. Aikawa T, Shinzawa K, Tanaka N, Tsujimoto Y (2010) Noxa is necessary for hydrogen peroxide-induced caspase-dependent cell death. FEBS Lett 584:681–688. doi:10.1016/j.febslet.2010.01.026

    Article  PubMed  CAS  Google Scholar 

  16. Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112:1593–1599. doi:10.1182/blood-2008-04-149385

    Article  PubMed  CAS  Google Scholar 

  17. Sun Y (2003) Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol Ther 2:623–629

    PubMed  CAS  Google Scholar 

  18. Jia L, Yang J, Hao X, Zheng M, He H, Xiong X, Xu L, Sun Y (2010) Validation of SAG/RBX2/ROC2 E3 ubiquitin ligase as an anticancer and radiosensitizing target. Clin Cancer Res 16:814–824. doi:10.1158/1078-0432.CCR-09-1592

    Article  PubMed  CAS  Google Scholar 

  19. Pandit B, Gartel AL (2011) Proteasome inhibitors induce p53-independent apoptosis in human cancer cells. Am J Pathol 178:355–360. doi:10.1016/j.ajpath.2010.11.010

    Article  PubMed  CAS  Google Scholar 

  20. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931. doi:10.1200/JCO.2005.04.4974

    Article  PubMed  CAS  Google Scholar 

  21. Arastu-Kapur S, Anderl JL, Kraus M, Parlati F, Shenk KD, Lee SJ, Muchamuel T, Bennett MK, Driessen C, Ball AJ, Kirk CJ (2011) Non-proteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res doi:10.1158/1078-0432.CCR-10-1950

  22. Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, Micklem DR, Ruurs P, Sylvain C, Lu Y, Shenk KD, Bennett MK (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114:3439–3447. doi:10.1182/blood-2009-05-223677

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grantsBrain Tumor from the National Brain Tumor Society and the Hyundai Motor Corporation Hope on Wheels Program. We thank Dr. Owen Lockerbie, Peter G. Smith and their colleagues at Millennium Pharmaceuticals for kindly providing MLN-4924. We are grateful to Drs. Richard Gilbertson and Martine Roussel for advice and guidance in the culture of primary medulloblastoma tumor cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Keller.

Additional information

Sachiko Ohshima-Hosoyama and Monika A. Davare contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohshima-Hosoyama, S., Davare, M.A., Hosoyama, T. et al. Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma. J Neurooncol 105, 475–483 (2011). https://doi.org/10.1007/s11060-011-0619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0619-0

Keywords

Navigation