Skip to main content

Advertisement

Log in

Bradykinin increases the permeability of the blood-tumor barrier by the caveolae-mediated transcellular pathway

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Bradykinin (BK) increases the permeability of the blood–tumor barrier (BTB) selectively through the transcellular pathway; however, the role of the caveolae structural proteins caveolin-1 and caveolin-2 in this process has not been precisely elucidated. Thus, this study was performed to examine whether caveolin-1 and caveolin-2 are involved in the regulation of this biological process. In the rat brain glioma (C6) model, western blot, immunohistochemistry, and immunofluorescence assays were used to detect the expression levels and locations of caveolin-1 and caveolin-2. The results showed that caveolin-1 and caveolin-2 levels increased 5 min after BK infusion, peaked at 15 min, and then decreased. Meanwhile, Evans blue (EB) assay showed that the permeability of the BTB increased significantly after BK infusion. In our previous study we demonstrated that the quantity of pinocytotic vesicles in the endothelial cells was dramatically augmented 15 min after BK infusion. The time point at which changes of caveolin-1 and caveolin-2 reached their peak was the same as that at which EB and the quantity of pinocytotic vesicles reached their peaks. This led to the conclusion that the BK-mediated BTB permeability increase resulting from augmentation of the quantity of pinocytotic vesicles (transcellular pathway) is associated with the significantly up-regulated expression of caveolin-1 and caveolin-2. This study thus contributes further to elucidating the molecular mechanism of opening of the BTB by BK and provides a theoretical basis for clinical application of BK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Black KL, Ningaraj NS (2004) Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control 11:165–173 [PubMed: 15153840]

    PubMed  Google Scholar 

  2. Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O (2004) Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 30(5):415–423 [PubMed: 15245774]

    Article  PubMed  Google Scholar 

  3. Inamura T, Black KL (1994) Bradykinin selectively opens blood-tumor barrier in experimental brain tumors. J Cereb Blood Flow Metab 14(5):862–870 [PubMed: 8063881]

    CAS  PubMed  Google Scholar 

  4. Nomura T, Inamura T, Black KL (1994) Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors. Brain Res 659(1–2):62–66 [PubMed: 7529648]

    Article  CAS  PubMed  Google Scholar 

  5. Packer RJ, Krailo M, Mehta M, Warren K, Allen J, Jakacki R, Villablanca JG, Chiba A, Reaman G (2005) A phase I study of concurrent RMP-7 and carboplatin with radiation therapy for children with newly diagnosed brainstem gliomas. Cancer 104:1968–1974 [PubMed: 16177987]

    Article  CAS  PubMed  Google Scholar 

  6. Warren K, Jakacki R, Widemann B, Aikin A, Libucha M, Packer R, Vezina G, Reaman G, Shaw D, Krailo M, Osborne C, Cehelsky J, Caldwell D, Stanwood J, Steinberg SM, Balis FM (2006) Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: a report from the Children’s Oncology Group. Cancer Chemother Pharmacol 58:343–347 [PubMed: 16408203]

    Article  CAS  PubMed  Google Scholar 

  7. Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171(2):177–189 [PubMed: 17897637]

    Article  CAS  PubMed  Google Scholar 

  8. Sanovich E, Bartus RT, Friden PM, Dean RL, Le HQ, Brightman MW (1995) Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res 705(1–2):125–135 [PubMed: 8821743]

    Article  CAS  PubMed  Google Scholar 

  9. Liu LB, Xue YX, Liu YH, Wang YB (2008) Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res 86(5):1153–1168 [PubMed: 18183615]

    Article  CAS  PubMed  Google Scholar 

  10. Hashizume K, Black KL (2002) Increased endothelial vesicular transport correlates with increased blood-tumor barrier permeability induced by bradykinin and leukotriene C4. J Neuropathol Exp Neurol 61(8):725–735 [PubMed: 12152787]

    CAS  PubMed  Google Scholar 

  11. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32(2):325–338 [PubMed: 15072542]

    Article  CAS  PubMed  Google Scholar 

  12. Roseberry AG, Hosey MM (2001) Internalization of the M2 muscarinic acetylcholine receptor proceeds through an atypical pathway in HEK293 cells that is independent of clathrin and caveolae. J Cell Sci 114(Pt 4):739–746 [PubMed: 111171379]

    CAS  PubMed  Google Scholar 

  13. Quest AF, Gutierrez-Pajares JL, Torres VA (2008) Caveolin-1: an ambiguous partner in cell signalling and cancer. J Cell Mol Med 12(4):1130–1150 [PubMed: 18400052]

    Article  CAS  PubMed  Google Scholar 

  14. Minshall RD, Malik AB (2006) Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 176(Pt 1):107–144 [PubMed: 16999218]

    Article  PubMed  Google Scholar 

  15. Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol 114(5):459–469 [PubMed: 17687559]

    Article  CAS  PubMed  Google Scholar 

  16. Taraseviciene-Stewart L, Scerbavicius R, Stewart JM, Gera L, Demura Y, Cool C, Kasper M, Voelkel NF (2005) Treatment of severe pulmonary hypertension: a bradykinin receptor 2 agonist B9972 causes reduction of pulmonary artery pressure and right ventricular hypertrophy. Peptides 26(8):1292–1300 [PubMed: 15878794]

    Article  CAS  PubMed  Google Scholar 

  17. Ningaraj NS, Rao M, Hashizume K, Asotra K, Black KL (2002) Regulation of blood-brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther 301(3):838–851 [PubMed: 12023511]

    Article  CAS  PubMed  Google Scholar 

  18. Ningaraj NS, Rao MK, Black KL (2003) Adenosine 5-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res 63(24):8899–8911 [PubMed: 14695207]

    CAS  PubMed  Google Scholar 

  19. Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11(4):644–653 [PubMed: 17760830]

    Article  CAS  PubMed  Google Scholar 

  20. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293(5539):2449–2452 [PubMed: 11498544]

    Article  CAS  PubMed  Google Scholar 

  21. Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, Chu PH, Peterson K, Ross J Jr, Chien KR (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 99(17):11375–11380 [PubMed: 12177436]

    Article  CAS  PubMed  Google Scholar 

  22. Van Helmond ZK, Miners JS, Bednall E, Chalmers KA, Zhang Y, Wilcock GK, Love S, Kehoe PG (2007) Caveolin-1 and -2 and their relationship to cerebral amyloid angiopathy in Alzheimer’s disease. Neuropathol Appl Neurobiol 33(3):317–327 [PubMed: 17493012]

    Article  PubMed  Google Scholar 

  23. Balazs Z, Panzenboeck U, Hammer A, Sovic A, Quehenberger O, Malle E, Sattler W (2004) Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model. J Neurochem 89(4):939–950 [PubMed: 15140193]

    Article  CAS  PubMed  Google Scholar 

  24. Stan RV (2005) Structure of caveolae. Biochim Biophys Acta 1746(3):334–348 [PubMed: 16214243]

    Article  CAS  PubMed  Google Scholar 

  25. Cornford EM, Hyman S (2005) Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx 2(1):27–43 [PubMed: 15717055]

    Article  PubMed  Google Scholar 

  26. Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, Bertossi M (2002) Expression of caveolin-1 in human brain microvessels. Neuroscience 115(1):145–152 [PubMed: 12401329]

    Article  CAS  PubMed  Google Scholar 

  27. Xia CY, Zhang Z, Xue YX, Wang P, Liu YH (2009) Mechanisms of the increase in the permeability of the blood-tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J Neurooncol 94(1):41–50 [PubMed: 19234812]

    Article  CAS  PubMed  Google Scholar 

  28. Nakano S, Matsukado K, Black KL (1996) Increased brain tumor microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide? Cancer Res 56(17):4027–4031 [PubMed: 8752174]

    CAS  PubMed  Google Scholar 

  29. Sugita M, Black KL (1998) Cyclic GMP-specific phosphodiesterase inhibition and intracarotid bradykinin infusion enhances permeability into brain tumors. Cancer Res 58:914–920 [PubMed: 9500450]

    CAS  PubMed  Google Scholar 

  30. Mayhan WG (2001) Regulation of blood-brain barrier permeability. Microcirculation 8(2):89–104 [PubMed: 11379794]

    CAS  PubMed  Google Scholar 

  31. Wang P, Xue YX (2005) Relationship between drug treatment time and bradykinin B2 receptor internalization in glioma cells. Chin J Cancer Prev Treat 12:167–171

    CAS  Google Scholar 

  32. Wang P, Fu W, Xue YX (2007) Effect of continuous stimulation of bradykinin on intracellular Ca2+ concentration in glioma cells. Prog Anat Sci 13:193–195, 199

    Google Scholar 

  33. García-Cardeña G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272(41):25437–25440 [PubMed: 9325253]

    Article  PubMed  Google Scholar 

  34. Sato Y, Sagami I, Shimizu T (2004) Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formation. J Biol Chem 279(10):8827–8836 [PubMed: 14681230]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China, under contract nos 30973079, 30800451, 30872656, 30700861 and 30670723, the Natural Science Foundation of Liaoning Province in China, under contract nos 20052102 and 20082102, the Science Research Projects in Institutions of Higher Learning of Liaoning Province, no. 2008850, and Shenyang Science and Technology Plan Projects, under contract nos 1091175-1-01 and 1081266-9-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-xue Xue.

Additional information

Li-bo Liu and Yi-xue Xue contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Lb., Xue, Yx. & Liu, Yh. Bradykinin increases the permeability of the blood-tumor barrier by the caveolae-mediated transcellular pathway. J Neurooncol 99, 187–194 (2010). https://doi.org/10.1007/s11060-010-0124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0124-x

Keywords

Navigation