Skip to main content
Log in

Development of physiological indices for screening dehydration tolerance in Eucalyptus clones under nursery conditions

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

An immediate concern of commercial tree plantation is the depleting water resource and drastic change in climatic conditions, which adversely affect the biomass productivity. Maximizing productivity from the available water and nutrient resources is presently the focus of most tree breeding and plantation programs. In Eucalyptus species variations in response to water deprived conditions are reported between species, among provenances and between clones. In the present study, 126 clones derived from the breeding program of Eucalyptus camaldulensis James. and Eucalyptus tereticornis sm. were screened for their response to progressive dehydration stress under controlled environmental conditions and morpho-physiological changes were recorded. Specific Leaf Area (SLA) and Relative Water Content (RWC) were found to be effective dehydration stress indices in both the species. Drought Susceptibility Index (DSI) which measures the decrease in yield of a genotype under drought conditions with respect to mean reduction of all genotypes studied, is a major selection criteria and quantitative indicator in selecting varieties for dehydration tolerance. DSI was recorded for each measured traits and SLA–DSI and RWC–DSI clustered the clones based on their tolerance/ susceptibility to dehydration stress. Additionally, ten prospective clones were selected as dehydration tolerant genotypes and are probable candidates for future multi-environment evaluation under arid and semi-arid conditions for deployment in plantation and breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data generated or analyzed during this study are provided in full within the published article and its supplementary materials.

References

  • Amrutha S, Muneera Parveen AB, Muthupandi M, Sivakumar V, Nautiyal R, Dasgupta MG (2019) Variation in morpho-physiological, biochemical and molecular responses of two Eucalyptus species under short-term water stress. Acta Bot Croat 78(2):125–134

    Article  CAS  Google Scholar 

  • Amrutha S, Parveen AB, Muthupandi M, Vishnu K, Bisht SS, Sivakumar V, Ghosh Dasgupta M (2021) Characterization of Eucalyptus camaldulensis clones with contrasting response to short-term water stress response. Acta Physiol Plant 43(1):1–3

    Article  Google Scholar 

  • Aranda I, Alía R, Ortega U, Dantas A, Majada J (2010) Intra-population variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in four maritime pine (Pinus pinaster L.) populations. Tree Genet Genomes 6:169–170

    Article  Google Scholar 

  • Aranda I, Forner A, Cuesta B, Valladares F (2012) Species-specific water use by forest tree species: from the tree to the stand. Agric Water Manag 114:67–77

    Article  Google Scholar 

  • Arend M, Kuster T, Günthardt-Goerg MS, Dobbertin M (2011) Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiol 31:287–297

    Article  PubMed  Google Scholar 

  • Aspelmeier S, Leuschner C (2006) Genotypic variation in drought response of silver birch (Betula pendula Roth): leaf and root morphology and carbon partitioning. Trees Struct Funct 20:42–52

    Article  Google Scholar 

  • Baquedano FJ, Castillo FJ (2006) Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees 20:689–700

    Article  Google Scholar 

  • Beech E, Rivers M, Oldfield S, Smith PP (2017) Global tree search: the first complete global database of tree species and country distributions. J Sustain for 36(5):454–489

    Article  Google Scholar 

  • Benito M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Global Ecol Biogeogr 20:766–778

    Article  Google Scholar 

  • Bhusal N, Lee M, Lee H, Adhikari A, Han AR, Han A, Kim HS (2021) Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci Total Environ 779:146466

    Article  CAS  PubMed  Google Scholar 

  • Błasiak A, Węgiel A, Łukowski A, Sułkowski S, Turski M (2021) The effects of tree and stand traits on the specific leaf area in managed scots pine forests of different ages. Forests 12(4):396

    Article  Google Scholar 

  • Bonamour S, Chevin LM, Charmantier A, Teplitsky C (2019) Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc 374(1768):20180178

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Chu P, Chen D, Bai Y, Niu S (2016) Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands. Funct Ecol 30:985–997

    Article  Google Scholar 

  • Cho N, Kim E, Lim JH, Seo B, Kang S (2020) Developing drought stress index for monitoring Pinus densiflora diebacks in Korea. J Ecol Environ 44(1):1–11

    Article  Google Scholar 

  • Coopman RE, Jara JC, Bravo LA, Sáez KL, Mella GR, Escobar R (2008) Changes in morpho-physiological attributes of Eucalyptus globulus plants in response to different drought hardening treatments. Electron J Biotechnol 11(2):30–39

    Article  Google Scholar 

  • Cortés AJ, Restrepo-Montoya M, Bedoya-Canas LE (2020) Modern strategies to assess and breed forest tree adaptation to changing climate. Front Plant Sci 11:583323

    Article  PubMed  PubMed Central  Google Scholar 

  • Cregg BM (2004) Improving drought tolerance of trees: theoretical and practical considerations. Acta Hortic 630:147–158

    Article  Google Scholar 

  • Csilléry K, Buchmann N, Fady B (2020) Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir (Abies alba Mill.) populations. Evol Appl 13(9):2357–2376

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz-Pérez JC, Sutter EG, Shackel KA (1995) Acclimatization and subsequent gas exchange, water relations, survival and growth of microcultured apple plantlets after transplanting them in soil. Physiol Plant 95(2):225–232

    Article  Google Scholar 

  • El-Mohsen AA, El-Shafi MA, Gheith E, Suleiman H (2015) Using different statistical procedures for evaluating drought tolerance indices of bread wheat genotypes. Adv Agric Biol 4(1):19–30

    Google Scholar 

  • Fariñas MD, Jimenez-Carretero D, Sancho-Knapik D, Peguero-Pina JJ, Gil-Pelegrín E, Gómez Álvarez-Arenas T (2019) Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves. Plant Methods 15(1):1

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi NS, Fujita DB, Basra SM (2009) Plant drought stress: effects, mechanisms and management. Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield response. Aust J Agric Res 29(5):897–912

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89(2):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores O, Garnier E, Wright IJ, Reich PB, Pierce S, Diaz S, Pakeman RJ, Rusch GM, Bernard-Verdier M, Testi B, Bakker JP (2014) An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecol Evol 4(14):2799–2811

    Article  PubMed  PubMed Central  Google Scholar 

  • Franco J, Crossa J, Villaseñor J, Taba S, Eberhart SA (1999) A two-stage, three-way method for classifying genetic resources in multiple environments. Crop Sci 39:259–267

    Article  Google Scholar 

  • Gazol A, Camarero JJ, Sánchez-Salguero R, Vicente-Serrano SM, Serra-Maluquer X, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA (2020) Drought legacies are short, prevail in dry conifer forests and depend on growth variability. J Ecol 108(6):2473–2484

    Article  Google Scholar 

  • George JP, Theroux-Rancourt G, Rungwattana K, Scheffknecht S, Momirovic N, Neuhauser L, Weißenbacher L, Watzinger A, Hietz P (2020) Assessing adaptive and plastic responses in growth and functional traits in a 10-year-old common garden experiment with pedunculate oak (Quercus robur L.) suggests that directional selection can drive climatic adaptation. Evol Appl 13(9):2422–2438

    Article  PubMed  PubMed Central  Google Scholar 

  • Gindaba J (2004) Water and nutrient relations of selected tree species of Ethiopia. Doctoral dissertation, Stellenbosch: University of Stellenbosch

  • Gitore SA, Danga B, Henga S, Gurmu F (2021) Evaluating Drought tolerance indices for selection of drought tolerant Orange Fleshed Sweet Potato (OFSP) genotypes in Ethiopia. Int J Agric Sci Food Technol 7(2):249–254

    Google Scholar 

  • Granda V, Delatorre C, Cuesta C, Centeno ML, Fernández B, Rodríguez A, Feito I (2014) Physiological and biochemical responses to severe drought stress of nine Eucalyptus globulus clones: a multivariate approach. Tree Physiol 34(7):778–786

    Article  CAS  PubMed  Google Scholar 

  • Gunn S, Farrar JF, Collis BE, Nason M (1999) Specific leaf area in barley: individual leaves versus whole plants. New Phytol 143:45–51

    Article  Google Scholar 

  • Hochberg U, Rockwell FE, Holbrook NM, Cochard H (2018) Iso/Anisohydry: a plant-environment interaction rather than a simple hydraulic trait. Trends Plant Sci 23(2):112–120

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (Part A: Global and sectoral aspects Summary for policymakers). In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Kallarackal J, Somen CK, Rajesh N (2002) Studies on water use of six tropical eucalypt species in Kerala. In: Bagchi SK, Varghese M, Siddappa (eds) Recent eucalypt research in India. Institute Forest Genetics and Tree Breeding, Coimbatore, pp 94–115

    Google Scholar 

  • Khajeddin S, Matinkhah S, Jafari Z (2019) A drought resistance index to select drought resistant plant species based on leaf water potential measurements. J Arid Land 11:623–635

    Article  Google Scholar 

  • Klein T (2014) The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol 28(6):1313–1320

    Article  Google Scholar 

  • König AO (2005) Provenance research: evaluating the spatial pattern of genetic variation. Conservation and management of forest genetic resources in Europe. 275–333.

  • Kremer A, Le Corre V, Petit RJ, Ducousso A (2010) Historical and contemporary dynamics of adaptive differentiation in European oaks. In: DeWoody A, Bickham J, Michler C, Nichols K, Rhodes G, Woeste K (eds) Molecular Approaches in natural resource conservation and management. Cambridge University Press, Cambridge, pp 101–122

    Chapter  Google Scholar 

  • Kremer A, Potts BM, Delzon S, Bailey J (2014) Genetic divergence in forest trees: understanding the consequences of climate change. Funct Ecol 28:22–36

    Article  Google Scholar 

  • Laisina JK, Maharijaya A, Sobir S, Purwito A (2021) The in vitro screening of drought tolerant potatoes (Solanum tuberosum L) of the center for tropical horticulture studies-IPB collections. J Ilmu Pertan Indones 26(2):235–242

    Article  Google Scholar 

  • Lee KC, Kweon H, Sung JW, Kim YS, Song YG, Cha S, Koo N (2022) Physiological response analysis for the diagnosis of drought and waterlogging damage in Prunus yedoensis. Forest Sci Technol 18(1):14–25

    Article  Google Scholar 

  • Li C, Berninger F, Koskela J, Sonninen E (2000a) Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin. Funct Plant Biol 27(3):231–238

    Article  Google Scholar 

  • Li C, Berninger F, Koskela J, Sonninen E (2000b) Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin. Aust J Plant Physiol 27:231–238

    Google Scholar 

  • Liu M, Wang Z, Li S, Lü X, Wang X, Han X (2017) Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Sci Rep 7(1):1–9

    Google Scholar 

  • Ludovisi R, Tauro F, Salvati R, Khoury S, Scarascia Mugnozzaa G, Harfouche A (2017) UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front Plant Sci 8:1681. https://doi.org/10.3389/fpls.2017.01681

    Article  PubMed  PubMed Central  Google Scholar 

  • Lugojan C, Ciulca S (2011) Evaluation of relative water content in winter wheat. J Hortic Fores Biotechnol 15:173–177

    Google Scholar 

  • Del Lungo A, Ball J, Carle J (2006) Global planted forests thematic study—results and analysis. FAO Forestry department, Planted Forests and Trees Working Papers. www.fao.org/forestry

  • Marchin RM, Ossola A, Leishman MR, Ellsworth DS (2020) A simple method for simulating drought effects on plants. Front Plant Sci 10:1715

    Article  PubMed  PubMed Central  Google Scholar 

  • Marco de Lima B, Cappa EP, Silva-Junior OB, Garcia C, Mansfield SD, Grattapaglia D (2019) Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS ONE 14(6):e0218747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marron N, Delay D, Petit JM, Dreyer E, Kahlem G, Delmotte FM, Brignolas F (2002) Physiological traits of two Populus x euramericana clones, Luisa Avanzo and Dorskamp, during a water stress and re-watering cycle. Tree Physiol 22(12):849–858

    Article  CAS  PubMed  Google Scholar 

  • Marron N, Dreyer E, Boudouresque E, Delay D, Petit JM, Delmotte FM, Brignolas F (2003) Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus x canadensis (Moench) clones, “Dorskamp” and “Luisa_Avanzo.” Tree Physiol 23(18):1225–1235

    Article  PubMed  Google Scholar 

  • Maseda PH, Fernández RJ (2016) Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances. Tree Physiol 36(2):243–251

    PubMed  Google Scholar 

  • Merchant A, Richter A, Popp M, Adams M (2006) Targeted metabolite profiling provides a functional link among eucalypt taxonomy, physiology and evolution. Phytochemistry 67(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Merchant A, Callister A, Arndt S, Tausz M, Adams M (2007) Contrasting physiological responses of six Eucalyptus species to water deficit. Ann Bot 100(7):1507–1515

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohi-Ud-Din M, Hossain M, Rohman M, Uddin M, Haque M, Ahmed JU, Hossain A, Hassan MM, Mostofa MG (2021) Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants 10(5):879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit J-M, Barbaroux C, Le Thiec D, Bréchet C, Brignolas F (2006) Impact of drought on productivity and water-use efficiency in 29 genotypes of Populus deltoides 9 Populus nigra. New Phytol 169:765–777

    Article  PubMed  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35(1):299–319

    Article  Google Scholar 

  • Negin B, Moshelion M (2016) The advantages of functional phenotyping in pre-field screening for drought-tolerant crops. Funct Plant Biol 44(1):107–118

    Article  PubMed  Google Scholar 

  • Ngugi MR, Doley D, Hunt MA, Dart P, Ryan P (2003) Leaf water relations of Eucalyptus cloeziana and Eucalyptus argophloia in response to water deficit. Tree Physiol 23(5):335–343

    Article  PubMed  Google Scholar 

  • Nilsen ET, Orcutt DM (1996) Physiology of plants under stress: abiotic factors. Wiley, New York

    Google Scholar 

  • OECD (2016) Eucalyptus (Eucalyptus spp.): safety assessment of transgenic organisms in the environment. OECD Consensus Documents, OECD Publishing, Paris, 6, 245–323

  • Oliveira LA, Cardoso AA, Andrade MT, Pereira TS, Araújo WL, Santos GA, Damatta FM, Martins SC (2022) Exploring leaf hydraulic traits to predict drought tolerance of Eucalyptus clones. Tree Physiol. https://doi.org/10.1093/treephys/tpac040

    Article  PubMed  Google Scholar 

  • Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust Bot 61:167–234

    Article  Google Scholar 

  • Petter G, Kreft H, Ong Y, Zotz G, Cabral JS (2021) Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns. Ecol Modell 460:109735

    Article  CAS  Google Scholar 

  • Peuke AD, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154(2):373–387

    Article  CAS  PubMed  Google Scholar 

  • Pierce LL, Running SW, Walker J (1994) Regional-scale relationships of leaf area index to specific leaf area and leaf nitrogen content. Ecol Appl 4:313–321

    Article  Google Scholar 

  • Pita P, Pardos JA (2001) Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiol 21(9):599–607

    Article  CAS  PubMed  Google Scholar 

  • Polle A, Chen SL, Eckert C, Harfouche A (2019) Engineering drought resistance in forest trees. Front Plant Sci 9:1875

    Article  PubMed  PubMed Central  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Rad MH, Assare MH, Banakar MH, Soltani M (2011) Effects of different soil moisture regimes on leaf area index, specific leaf area and water use efficiency in eucalyptus (Eucalyptus camaldulensis Dehnh) under dry climatic conditions. Asian J Plant Sci 10(5):294–300

    Article  Google Scholar 

  • Rahman MM, Mandal MSN, Alam MA, Rahman S, Begum N, Khalil IH (2017) Identification of drought tolerant spring wheat genotypes based on some of the physiological traits. SABRAO J Breed Genet 49(1):104–115

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci 94:13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resende AF, Piedade MT, Feitosa YO, Andrade VH, Trumbore SE, Durgante FM, Macedo MO, Schöngart J (2020) Flood-pulse disturbances as a threat for long-living Amazonian trees. New Phytol 227(6):1790–1803

    Article  PubMed  Google Scholar 

  • Richards RA, Rebetzke GJ, Watt M, Condon AT, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37(2):85–97

    Article  Google Scholar 

  • Rieger M, Lo Bianco R, Okie WR (2003) Responses of Prunus ferganensis, Prunus persica and two interspecific hybrids to moderate drought stress. Tree Physiol 23:51–58

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Moshelion M (2014) The dynamic isohydric–anisohydric behavior of plants upon fruit development: taking a risk for the next generation. Tree Physiol 34(11):1199–1202

    Article  PubMed  Google Scholar 

  • Saint Pierre C, Crossa JL, Bonnett D, Yamaguchi-Shinozaki K, Reynolds MP (2012) Phenotyping transgenic wheat for drought resistance. J Exp Bot 63(5):1799–1808

    Article  CAS  PubMed  Google Scholar 

  • San-Eufrasio B, Sánchez-Lucas R, López-Hidalgo C, Guerrero-Sánchez VM, Castillejo MÁ, Maldonado-Alconada AM, Jorrín-Novo JV, Rey M-D (2020) Responses and differences in tolerance to water shortage under climatic dryness conditions in seedlings from Quercus spp. and Andalusian Q. ilex populations. Forests 11(6):707

    Article  Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 1:595–619

    Article  Google Scholar 

  • Schwarz J, Skiadaresis G, Kohler M, Kunz J, Schnabel F, Vitali V, Bauhus J (2020) Quantifying growth responses of trees to drought: a critique of commonly used resilience indices and recommendations for future studies. Curr for Rep 6(3):185–200

    Article  Google Scholar 

  • Seidel H, Schunk C, Matiu M, Menzel A (2016) Diverging drought resistance of scots pine provenances revealed by infrared thermography. Front Plant Sci 7:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Senf C, Pflugmacher D, Zhiqiang Y (2018) Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat Commun 9:4978

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva FC, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiol 24(10):1165–1172

    Article  Google Scholar 

  • Silva PH, Campoe OC, De Paula RC, Lee DJ (2016) Seedling growth and physiological responses of sixteen eucalypt taxa under controlled water regime. Forests 7(6):110

    Article  Google Scholar 

  • Soltys-Kalina D, Plich J, Strzelczyk-Żyta D, Śliwka J, Marczewski W (2016) The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed Sci 66(2):328–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun F, Chen Q, Chen Q, Jiang M, Gao W, Qu Y (2021) Screening of key drought tolerance indices for cotton at the flowering and boll setting stage using the dimension reduction method. Front Plant Sci 12:619926

    Article  PubMed  PubMed Central  Google Scholar 

  • Susiluoto S, Berninger F (2007) Interactions between morphological and physiological drought responses in Eucalyptus microtheca. Silva Fenn 41(2):221

    Article  Google Scholar 

  • Tadesse T, Hollinger DY, Bayissa YA, Svoboda M, Fuchs B, Zhang B, Demissie G, Wardlow BD, Bohrer G, Clark KL, Desai AR (2020) Forest Drought Response Index (ForDRI): a new combined model to monitor forest drought in the eastern United States. Remote Sens 12(21):3605

    Article  Google Scholar 

  • Takahashi F, Shinozaki K (2019) Long-distance signaling in plant stress response. Curr Opin Plant Biol 47:106–111

    Article  CAS  PubMed  Google Scholar 

  • Takashima Y, Hiraoka Y, Matsushita M, Takahashi M (2021) Evaluation of responsivity to drought stress using infrared thermography and chlorophyll fluorescence in potted clones of Cryptomeria japonica. Forests 12(1):55

    Article  Google Scholar 

  • Thakur A (2004) Use of easy and less expensive methodology to rapidly screen fruit crops for drought tolerance. Acta Hortic 662:231–235

    Article  Google Scholar 

  • Tibshirani R, Walther G, Hastie T (2001) Estimating the number of data clusters via the Gap statistic. J R Stat Soc 63:411–423

    Article  Google Scholar 

  • Todea IM, Gonzalez-Orenga S, Plazas M, Sestras AF, Prohens J, Vicente O, Sestras RE, Boscaiu M (2019) Screening for salt and water stress tolerance in fir (Abies alba) populations. Not Bot Horti Agrobot Cluj Napoca 47(4):1063–1072

    Article  Google Scholar 

  • Tribulato A, Toscano S, Di Lorenzo V, Romano D (2019) Effects of water stress on gas exchange, water relations and leaf structure in two ornamental shrubs in the Mediterranean Area. Agronomy 9(7):381

    Article  CAS  Google Scholar 

  • van Kampen R, Fisichelli N, Zhang YJ, Wason J (2022) Drought timing and species growth phenology determine intra-annual recovery of tree height and diameter growth. AoB Plants 14(3):plac012

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitasse Y, Bottero A, Cailleret M, Bigler C, Fonti P, Gessler A, Lévesque M, Rohner B, Weber P, Rigling A, Wohlgemuth T (2019) Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob Change Biol 25(11):3781–3792

    Article  Google Scholar 

  • Wahb-Allah MA, Alsadon AA, Ibrahim AA (2011) Drought tolerance of several tomato genotypes under greenhouse conditions. World Appl Sci J 15(7):933–940

    Google Scholar 

  • Wehner GG, Balko CC, Enders MM, Humbeck KK, Ordon FF (2015) Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biol 15(1):1–5

    Article  CAS  Google Scholar 

  • Wellstein C, Poschlod P, Gohlke A, Chelli S, Campetella G, Rosbakh S, Canullo R, Kreyling J, Jentsch A, Beierkuhnlein C (2017) Effects of extreme drought on specific leaf area of grassland species: a meta analysis of experimental studies in temperate and sub Mediterranean systems. Glob Change Biol 23(6):2473–2481

    Article  Google Scholar 

  • Whitehead D, Beadle CL (2004) Physiological regulation of productivity and water use in Eucalyptus: a review. For Ecol Manag 193(1–2):113–140

    Article  Google Scholar 

  • Zhang JW, Marshall JD, Jaquish BC (1993) Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotsuga menziesii. Oecologia 93:80–87

    Article  PubMed  Google Scholar 

  • Zheng L (2005) Exploration of relationships between physiological parameters and growth performance of rice (Oryza sativa L.) seedlings under salinity stress using multivariate analysis. Plant Soil 268:51–59

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Department of Biotechnology, Government of India for funding the research work (Project No. BT/PR10539/PBD/16/1064/2013). The funding support as research fellowship was provided to ME and SA by Department of Biotechnology, Government of India.

Funding

This study was funded by Department of Biotechnology, Government of India with Grant Number BT/PR10539/PBD/16/1064/2013.

Author information

Authors and Affiliations

Authors

Contributions

ME conducted data analysis and interpretation and drafted the manuscript, SA conducted the experiment and recorded the data, VS developed the clones and MGD conceptualized the study and finalized the manuscript.

Corresponding author

Correspondence to Modhumita Ghosh Dasgupta.

Ethics declarations

Competing interest

The authors declare that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 666 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthulakshmi, E., Amrutha, S., Sivakumar, V. et al. Development of physiological indices for screening dehydration tolerance in Eucalyptus clones under nursery conditions. New Forests 54, 1103–1118 (2023). https://doi.org/10.1007/s11056-022-09958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-022-09958-2

Keywords

Navigation