Skip to main content
Log in

On Optimizing Miniscope Data Analysis with Simulated Data: A Study of Parameter Optimization in the Minian Analysis Pipeline

  • Methods
  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

In vivo calcium imaging is widely used in neuroscience to assess the activity of neuronal ensembles. The advent of the single-photon miniature fluorescence microscope (miniscope) has made it possible to use intravital calcium imaging in freely moving animals. Various algorithms and analysis packages have been developed to analyze miniscope data. The present work uses model data with different noise levels as an example to examine the relationship between the accuracy of neuron detection and the values of parameters in Minian, a package for analyzing miniscope data. On the basis of the results obtained, recommendations are given for changing the values of the Minian parameters depending on the noise level in the processed data. The results obtained here provide preliminary guidance for selecting appropriate values for Minian parameters for processing experimental data. The results of this study are expected to be relevant to neuroscientists using intravital calcium imaging in freely moving animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharoni, D., Khakh, B. S., Silva, A. J., and Golshani, P., “All the light that we can see: a new era in miniaturized microscopy,” Nat. Methods, 16, No. 1, 11–13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, Y., Soltanian-Zadeh, S., Farsiu, S., and Gong, Y., “Segmentation of neurons from fluorescence calcium beyond real time,” Nat. Machine Intell., 3, No. 7, 590–600 (2021).

    Article  Google Scholar 

  • Barbera, G., Jun, R., Zhang, Y., et al., “A miniature fluorescence microscope for multi-plane imaging,” Sci. Rep., 12, No. 1, 16686 (2022).

  • Cantu, D. A., Wang, B., Gongwer, M. W., et al., “EZcalcium: Opensource toolbox for analysis of calcium imaging data,” Front. Neural Circuits, 14 (2020).

  • de Kraker, L., Seignette, K., Thamizharasu, P., et al., “SpecSeg is a versatile toolbox that segments neurons and neurites in chronic calcium imaging datasets based on low-frequency cross-spectral power,” Cell Rep. Methods, 2, No. 10, 100299 (2022).

  • Denk, W., Strickler, J. H., and Webb, W. W., “Two-photon laser scanning fluorescence microscopy,” Science, 248, No. 4951, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Dong, Z., Mau, W., Feng, Y., et al., “Minian, an open-source miniscope analysis pipeline,” eLife, 11, e70661 (2022).

  • Engelbrecht, C. J., Johnston, R. S., Seibel, E. J., and Helmchen, F., “Ultracompact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Optics Express, 16, No. 8, 5556–5564 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Erofeev, A. I., Barinov, D. S., Gerasimov, E. I., et al., “NeuroInfoViewer: A software package for analysis of miniscope data,” Neurosci. Behav. Physiol., 51, No. 8, 1199–1205 (2021).

    Article  Google Scholar 

  • Escobet-Montalban, A., Gasparoli, F. M., Nylk, J., et al., “Three-photon light-sheet fluorescence microscopy,” Opt. Lett., 43, No. 21, 5484–5487 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, J., Giovannucci, A., and Pnevmatikakis, E. A., “Online analysis of microendoscopic 1-photon calcium imaging data streams,” PLoS Comput. Biol., 17, No. 1, e1008565 (2021).

  • Ghosh, K. K., Burns, L. D., Cocker, E. D., et al., “Miniaturized integration of a fluorescence microscope,” Nat. Methods, 8, No. 10, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannucci, A., Friedrich, J., Gunn, P., Ket al., “CaImAn an open source tool for scalable calcium imaging data analysis,” eLife, 8, e38173 (2019).

  • Grienberger, C. and Konnerth, A., “Imaging calcium in neurons,” Neuron, 73, No. 5, 862–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki, S. and Ikegaya, Y., “In vivo one-photon confocal calcium imaging of neuronal activity from the mouse neocortex,” J. Integr. Neurosci., 17, No. 3–4, 671–678 (2018).

    Article  PubMed  Google Scholar 

  • Li, M., Liu, C., Cui, X., et al., “An open-source real-time motion correctionplug-in for single-photon calcium imaging of head-mounted microscopy,” Front. Neural Circuits, 16, (2022).

  • Liberti, W. A., Perkins, L. N., Leman, D. P., and Gardner, T. J., “An open source, wireless capable miniature microscope system,” J. Neural Eng., 14, No. 4, 045001 (2017).

  • Lu, J., Li, C., Singh-Alvarado, J., et al., “MIN1PIPE: A Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline,” Cell Rep., 23, No. 12, 3673–3684 (2018b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukamel, E. A., Nimmerjahn, A., and Schnitzer, M. J., “Automated analysis of cellular signals from large-scale calcium imaging data,” Neuron, 63, No. 6, 747–760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pachitariu, M., Stringer, C., Dipoppa, M., et al., “Suite2p: beyond 10000 neurons with standard two-photon microscopy,” BioRxiv, 061507 (2017).

  • Pnevmatikakis, E. A. and Giovannucci, A., “NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data,” J. Neurosci. Methods, 291, 83–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Pnevmatikakis E., A., Soudry, D., Gao, Y., et al., “Simultaneous denoising, deconvolution, demixing of calcium imaging data,” Neuron, 89, No. 2, 285–299 (2016).

  • Pochechuev, M. S., Fedotov, I. V., Ivashkina, O. I., et al., “Reconnectable fiberscopes for chronic in vivo deep-brain imaging,” J. Biophotonics, 11, No. 4, e201700106 (2018).

  • Radstake, F. D. W., Raaijmakers, E. A. L., Luttge, R., et al., “CALIMA: The semi-automated open-source calcium imaging analyzer,” Comp. Meth. Progr. Biomed., 179, 104991 (2019).

    Article  CAS  Google Scholar 

  • Resendez, S. L. and Stuber, G. D., “In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behavior,” Neuropsychopharmacology, 40, No. 1, 238–239 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Robbins, M., Christensen, C., Kaminski, C., and Zlatic, M., “Calcium imaging analysis ? how far have we come? [version 2; peer review: 3 approved],” F1000Res., 10, (258) (2021).

  • Russell, J. T., “Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology,” Br. J. Pharmacol., 163, No. 8, 1605–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sità, L., Brondi, M., Lagomarsino de Leon Roig, P., et al., “A deep-learning approach for online cell identification and trace extraction in functional two-photon calcium imaging,” Nat. Commun., 13, No. 1, 1529 (2022).

  • ter Veer, M. J. T., Pfeiffer, T., and Nägerl, U. V., “Two-photon STED microscopy for nanoscale imaging of neural morphology in vivo. Super-resolution microscopy,” Methods Mol. Biol., 1663, 45–64 (2017).

  • Vogt, N., “Two-photon imaging in freely behaving mice,” Nat. Methods, 19, No. 5, 518 (2022).

  • Wu, X., Yang, X., Song, L., et al., “A modified miniscope system for simultaneous electrophysiology and calcium imaging in vivo,” Front. Integr. Neurosci., 15, (2021).

  • Zátonyi, A., Madarász, M., Szabó, Á., et al., “Transparent, low-autofluorescence microECoG device for simultaneous Ca2+ imaging and cortical electrophysiology in vivo,” J. Neural Eng., 17, No. 1, 016062 (2020).

  • Zhou, P., Resendez, S. L., Rodriguez-Romaguera, J., et al., “Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data,” eLife, 7, e28728 (2018).

  • Zong, W., Obenhaus, H. A., Skytøen, E. R., et al., “Large-scale two-photon calcium imaging in freely moving mice,” Cell, 185, No. 7, 1240–1256.e1230 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong, W., Wu, R., Chen, S., et al., “Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging,” Nat. Methods, 18, No. 1, 46–49 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Erofeev.

Additional information

A. I. Erofeev and M. V. Petrushan contributed equally to this work and share first authorship.

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 73, No. 5, pp. 704–723, September–October, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erofeev, A.I., Petrushan, M.V., Lysenko, L.V. et al. On Optimizing Miniscope Data Analysis with Simulated Data: A Study of Parameter Optimization in the Minian Analysis Pipeline. Neurosci Behav Physi 54, 251–262 (2024). https://doi.org/10.1007/s11055-024-01593-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-024-01593-y

Keywords

Navigation