Skip to main content

Advertisement

Log in

Salifen Prevents Perinatal Hypoxia-Induced Cognitive Impairments and Changes in the Expression of GABAB Receptors in the Rat Neocortex

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here a study examining the effects of acute normobaric hypoxia in the early postnatal period of development (postnatal day 2) on learning ability and the expression of GABAB receptors in the neocortex (medial prefrontal cortex) of adolescent rats (postnatal days 55–60) and also addressing the possibility of correcting identified disorders with the Russian-made drug salifen, a GABA derivative. Perinatal hypoxia has been shown to impair the formation and retention of memory traces in the novel object recognition and conditioned passive avoidance reflex tests and to reduce spatial learning ability in the Morris water maze test. Analysis of Western blot results revealed an increase in the quantity of GABAB receptor protein in the medial prefrontal area of the neocortex of rats exposed to perinatal hypoxia. Administration of salifen 15 mg/kg for 14 days after exposure to hypoxia improved the cognitive abilities of rats and normalized the level of GABAB receptor protein expression in the medial prefrontal cortex of rats. The results obtained here are of interest for solving an applied challenge in neonatology – the search for effective pharmacological correction of the sequelae of perinatal hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akirav, I. and Maroun, M., “Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory,” Cereb. Cortex, 16, No. 12, 1759–1765 (2006).

    Article  PubMed  Google Scholar 

  • Almasi, A., Zarei, M., Raoufi, S., et al., “Influence of hippocampal GABA B receptor inhibition on memory in rats with acute β-amyloid toxicity,” Metab. Brain. Dis., 33, No. 6, 1859–1867 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Anju, T. R., Abraham, P. M., Antony, S., and Paulose, C. S., “Alterations in cortical GABAB receptors in neonatal rats exposed to hypoxic stress: role of glucose, oxygen, and epinephrine resuscitation,” Mol. Cell Biochem., 343, No. 1–2, 1–11 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Antunes, M. and Biala, G., “The novel object recognition memory: neurobiology, test procedure and its modifications,” Cogn. Process., 13, No. 2, 93–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Babcock, A. M., Everingham, A., Paden, C. M., and Kimura, M., “Baclofen is neuroprotective and prevents loss of calcium/calmodulin-dependent protein kinase II immunoreactivity in the ischemic gerbil hippocampus,” J. Neurosci. Res., 67, No. 6, 804–811 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Babenko, O., Kovalchuk, I., and Metz, G. A., “Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health,” Neurosci. Biobehav. Rev., 48, 70–91 (2015).

    Article  PubMed  Google Scholar 

  • Bañuelos, C., Beas, B. S., McQuail, J. A., et al., “Prefrontal cortical GABAergic dysfunction contributes to age-related working memory impairment,” J. Neurosci., 34, No. 10, 3457–3466 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bettler, B., Kaupmann, K., Mosbacher, J., and Gassmann, M., “Molecular structure and physiological functions of GABA(B) receptors,” Physiol. Rev., 84, No. 3, 835–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Buresh, Ya., Bureshova, O., and Houston, J. P., Methods and Basic Experiments for Studying the Brain and Behavior, Vysshaya Shkola, Moscow (1991).

  • Butkevich, I. P. and Mikhailenko, V. A., “Prenatal effects of fluoxetine on adaptive behavior and the cognitive domain in male rats during the prepubertal period of development,” Ros. Fiziol. Zh., 103, No. 7, 744–754 (2017).

    CAS  Google Scholar 

  • Chalifoux, J. R. and Carter, A. G., “GABAB receptor modulation of synaptic function,” Curr. Opin. Neurobiol., 21, No. 2, 339–344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimarosti, H., Kantamneni, S., and Henley, J. M., “Ischaemia differentially regulates GABA(B) receptor subunits in organotypic hippocampal slice cultures,” Neuropharmacology, 56, No. 8, 1088–1096 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clancy, B., Darlington, R. B., and Finlay, B. L., “Translating developmental time across mammalian species,” Neuroscience, 105, No. 1, 7–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  • DeSousa, N. J., Beninger, R. J., Jhamandas, K., and Boegman, R. J., “Stimulation of GABAB receptors in the basal forebrain selectively impairs working memory of rats in the double Y-maze,” Brain Res., 641, No. 1, 29–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Desplats, P. A., “Perinatal programming of neurodevelopment: epigenetic mechanisms and the prenatal shaping of the brain,” Adv. Neurobiol., 10, 335–361 (2015).

    Article  PubMed  Google Scholar 

  • Enna, S. J. and Bowery, N. G., “GABA(B) receptor alterations as indicators of physiological and pharmacological function,” Biochem. Pharmacol., 68, No. 8, 1541–1548 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Euston, D. R., Gruber, A. J., and McNaughton, B. L., “The role of medial prefrontal cortex in memory and decision making,” Neuron, 76, No. 6, 1057–1070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairfax, B. P., Pitcher, J. A., Scott, M. G. H., et al., “Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability,” J. Biol. Chem., 279, No. 13, 12,565–12,573 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Frangaj, A. and Fan, Q. R., “Structural biology of GABAB receptor,” Neuropharmacology, 136, 68–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Fritzius, T. and Bettler, B., “The organizing principle of GABA B receptor complexes: Physiological and pharmacological implications,” Basic Clin. Pharmacol. Toxicol, 126, Suppl. 6, 25–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Gaiarsa, J.-L., Kuczewski, N., and Porcher, C., “Contribution of metabotropic GABA(B) receptors to neuronal network construction,” Pharmacol. Ther., 132, No. 2, 170–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Galvez, T., Duthey, B., Kniazeff, J., et al., “Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function,” EMBO J., 20, No. 9, 2152–2159 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gozlan, H. and Ben-Ari, Y., “Interneurons are the source and the targets of the first synapses formed in the rat developing hippocampal circuit,” Cereb. Cortex, 13, No. 6, 684–692 (2003).

    Article  PubMed  Google Scholar 

  • Heaney, C. F. and Kinney, J. W., “Role of GABA(B) receptors in learning and memory and neurological disorders,” Neurosci. Biobehav. Rev., 63, 1–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Jones, M. W., “A comparative review of rodent prefrontal cortex and working memory,” Curr. Mol. Med., 2, No. 7, 639–647 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Jurado-Parras, M. T., Delgado-Garcia, J. M., et al., “Presynaptic GABAB receptors regulate hippocampal synapses during associative learning in behaving mice,” PLoS One, 11, No. 2, e0148800 (2016).

    Google Scholar 

  • Kasten, C. R. and Boehm, S. L., 2nd, “Identifying the role of pre- and postsynaptic GABAB receptors in behavior,” Neurosci. Biobehav. Rev., 57, 70–87 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauser, H., Sahu, S., Kumar, S., and Panjwani, U., “Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits,” Physiol. Behav., 123, 187–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Khozhai, L. I. and Otellin, V. A., “Distribution of GABAergic neurons in the rat neocortex during the postnatal period after perinatal hypoxia,” Morfologiya, 146, No. 4, 7–10 (2014).

    CAS  Google Scholar 

  • Kleschevnikov, A. M., Belichenko, P. V., Faizi, M., et al., “Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists,” J. Neurosci., 32, No. 27, 9217–9227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, K., Takei, H., Yamamoto, K., et al., “Kinetics of GABAB autoreceptor- mediated suppression of GABA release in rat insular cortex,” J. Neurophysiol., 107, No. 5, 1431–1442 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Koulen, P. L., Malitschek, B., Kuhn, R., et al., “Presynaptic and postsynaptic localization of GABA(B) receptors in neurons of the rat retina,” Eur. J. Neurosci., 10, No. 4, 1446–1456 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Kovalev, G. I., Sukhorukova, N. A., Vasil’eva, E. V., et al., “Analysis of behavioral and neuroceptor effects of atomoxetine and phenibut in CD-1 mice with different attention spans,” Eksperim. Klin. Farmakol., 84, No. 4, 3–11 (2021).

  • Kumar, K., Sharma, S., Kumar, P., and Deshmukh, R., “Therapeutic potential of GABA(B) receptor ligands in drug addiction, anxiety, depression and other CNS disorders,” Pharmacol. Biochem. Behav., 110, 174–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Lapin, I., “Phenibut (beta-phenyl-GABA, a tranquilizer and nootropic drug,” CNS Drug Rev., 7, No. 4, 471–481 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levina, A. S., Zakharov, G. A., Shiryaeva, N. V., and Vaido, A. I., “Comparative characteristics of the behavior of rats of two strains with different thresholds of nervous system excitability in a model of spatial learning in a Morris water maze,” Zh. Vyssh. Nerv. Deyat., 68, No. 3, 366–377 (2018).

    Google Scholar 

  • Li, G., Lv, J., Wang, J., et al., “GABAB receptors in the hippocampal dentate gyrus are involved in spatial learning and memory impairment in a rat model of vascular dementia,” Brain Res. Bull., 124, 190–197 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Louzoun-Kaplan, V., Zuckerman, M., Perez-Polo, J. R., and Golan, H. M., “Prenatal hypoxia down regulates the GABA pathway in newborn mice cerebral cortex; partial protection by MgSO4,” Int. J. Dev. Neurosci., 26, No. 1, 77–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Macdonald, R. L. and Olsen, R. W., “GABAA receptor channels,” Annu. Rev. Neurosci., 17, 569–602 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Mironova, V. I., Akulova, V. K., Khozhai, L. I., et al., “Expression of vascular endothelial growth factor in the rat brain after perinatal hypoxia and during pharmacological correction,” Neirokhimiya, 36, No. 2, 170–176 (2019).

    Google Scholar 

  • Morgun, A. V., Kuvacheva, N. V., Taranushenko, T. E., et al., “Current concepts of the pathogenesis of perinatal ischemic injury to cells neurovascular units in the brain: target molecules for neuroprotection,” Vestn. Ross. Akad. Med. Nauk, 12, 26–35 (2013).

    Article  Google Scholar 

  • Morici, J. F., Bekinschtein, P., and Weisstaub, N. V., “Medial prefrontal cortex role in recognition memory in rodents,” Behav. Brain Res., 292, 241–251 (2015).

    Article  PubMed  Google Scholar 

  • Nalivaeva, N. N., Turner, A. J., and Zhuravin, I. A., “Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration,” Front. Neurosci., 12, 825 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nisimov, H., Orenbuch, A., Pleasure, S. J., and Golan, H. M., “Impaired organization of GABAergic neurons following prenatal hypoxia,” Neuroscience, 384, 300–313 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Northington, F. J., Chavez-Valdez, R., and Martin, L. J., “Neuronal cell death in neonatal hypoxia – ischemia,” Ann. Neurol., 69, No. 5, 743–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordyan, N. E., Akulova, V. K., Mironova, V. I., and Otellin, V. A., “Behavioral disorders caused by perinatal hypoxia in juvenile rats and their correction with GABA derivatives,” Byull Eksperim. Biol. Med., 164, No. 8, 140–144 (2017).

    Google Scholar 

  • Ordyan, N. E., Akulova, V. K., Pivina, S. G., et al., “Perinatal hypoxia-induced impairments to the behavioral and hormonal stress response of adolescent rats and their correction with novel GABA derivatives,” Zh. Evolyuts. Biokhim. Fiziol., 55, No. 1, 59–64 (2019).

    Google Scholar 

  • Otellin, V. A., Khozhai, L. I., and Tyurenkov, I. N., “Effect of phenibut on the number of GABAergic neurons in the rat neocortex in the juvenile and prepubertal periods after acute hypoxia in the perinatal period,” Eksperim. Klin. Farmakol., 83, No. 2, 3–7 (2020).

    CAS  Google Scholar 

  • Otellin, V. A., Khozhai, L. I., and Tyurenkov, I. N., “Impact of perinatal hypoxia on the structures of the blood–brain barrier in rats after administration of Salifen,” Morfologiya, 148, No. 6, 34–37 (2015).

    CAS  Google Scholar 

  • Otellin, V. A., Khozhai, L. I., and Vataeva, L. A., “The influence of hypoxia in early perinatal ontogenesis on the behavior and structural characteristics of the rat brain,” Zh. Evolyuts. Biokhim. Fiziol., 48, No. 5, 467–473 (2012).

    CAS  Google Scholar 

  • Otellin, V. A., Khozhai, L. I., Shishko, T. T., and Tyurenkov, I. N., “Longterm consequences of perinatal hypoxia and their possible pharmacological correction: reactions of neocortical nerve cells and synapses,” Morfologiya, 150, No. 6, 7–12 (2016).

    Google Scholar 

  • Pal’chik, A. B. and Shabalov, N. P., Hypoxic-Ischemic Encephalopathy of the Newborn, MEDpress-Inform, Moscow (2006).

  • Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, Academic Press, Elsevier (2007), 6th ed.

  • Peña, F. and Ramirez, J.-M., “Hypoxia-induced changes in neuronal network properties,” Mol. Neurobiol., 32, No. 3, 251–283 (2005).

    Article  PubMed  Google Scholar 

  • Que, M., Witte, O. W., Neumann-Haefelin, T., et al., “Changes in GABA(A) and GABA(B) receptor binding following cortical photothrombosis: a quantitative receptor autoradiographic study,” Neuroscience, 93, No. 4, 1233–1240 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Robinson, S., Qing Li, Dechant, A., and Cohen, M. L., “Neonatal loss of gamma-aminobutyric acid pathway expression after human perinatal brain injury,” J. Neurosurg., 104, No. 6 Supplement, 396–408 (2006).

  • Rose, T. R. and Wickman, K., “Mechanisms and regulation of neuronal GABAB receptor-dependent signaling,” in: Current Topics in Behavioral Neurosciences, Springer, Berlin, Heidelberg (2020), https://doi.org/10.1007/7854_2020_129.

  • Schuler, V., Lüscher, C., Blanchet, C., et al., “Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)),” Neuron, 31, No. 1, 47–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Semchenko, V. V., Stepanov, S. S., and Alekseeva, G. V., Postanoxic Encephalopathy, Omsk State Medical Academy, Omsk (1999).

  • Silachev, D. N., Shram, S. I., Shakova, S. M., et al., “Formation of spatial memory in rats with ischemic damage to the prefrontal cortex; effects of a synthetic analogue of ACTH (4–7),” Zh. Vyssh. Nerv. Deyat., 58, No. 4, 458–466 (2008).

    CAS  Google Scholar 

  • Sutherland, R. J., Kolb, B., and Whishaw, I. Q., “Spatial mapping: definitive disruption by hippocampal or medial frontal cortical damage in the rat,” Neurosci. Lett., 31, No. 3, 271–276 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Terunuma, M., “Diversity of structure and function of GABA B receptors: a complexity of GABA B-mediated signaling,” Proc. Jpn. Acad., Ser. B Phys. Biol. Sci., 94, No. 10, 390–411 (2018).

  • Terunuma, M., Revilla-Sanchez, R., Quadros, I. M., et al., “Postsynaptic GABAB receptor activity regulates excitatory neuronal architecture and spatial memory,” J. Neurosci., 34, No. 3, 804–816 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyurenkov, I. N., Kurkin, D. V., Volotova, E. V., et al., “Effects of various compositions of phenibut with organic acids on neurological, cognitive, and behavioral deficits in rats with focal cerebral ischemia,” Sib. Med. Zh., 8, 61–63 (2012).

    Google Scholar 

  • Van de Berg, W. D. J., Kwaijtaal, M., de Louw, A. J. A., et al., “Impact of perinatal asphyxia on the GABAergic and locomotor system,” Neuroscience, 117, No. 1, 83–96 (2003).

    Article  PubMed  Google Scholar 

  • Vasil’eva, O. S., Makarenko, S. V., Otellin, V. A., et al., RF Patent for Invention No. 2672884 S1, “A drug that preserves the population of GABAergic neurons after acute perinatal hypoxia,” Byull., No. 32 (2018).

  • Vavers, E., Zvejniece, L., Svalbe, B., et al., “The neuroprotective effects of R-phenibut after focal cerebral ischemia,” Pharmacol. Res., 113, No. B, 796–801 (2016).

  • Vollenweider, F., Bendfeldt, K., Maetzler, W., et al., “GABA(B) receptor expression and cellular localization in gerbil hippocampus after transient global ischemia,” Neurosci. Lett., 395, No. 2, 118–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Volodin, N. N., Medvedev, M. I., and Rogatkin, S. O., “Current challenges in perinatal neurology,” Zh. Nevrol. Psikhiat., 7, 4–8 (2001).

    Google Scholar 

  • Vorhees, C. V. and Williams, M. T., “Morris water maze: procedures for assessing spatial and related forms of learning and memory,” Nat. Protoc., 1, No. 2, 848–858 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldmeier, P. C., Kaupmann, K., and Urwyler, S., “Roles of GABAB receptor subtypes in presynaptic auto- and heteroreceptor function regulating GABA and glutamate release,” J. Neural Transm. (Vienna), 115, No. 10, 1401–1411 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wu, C. and Sun, D., “GABA receptors in brain development, function, and injury,” Metab. Brain. Dis., 30, No. 2, 367–379 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Fukushima, H., and Kida, S., “Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory,” Mol. Brain, 4, 4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhuravin, I. A., Dubrovskaya, N. M., Vasilev, D. S., et al., “Prenatal hypoxia produces memory deficits associated with impairment of longterm synaptic plasticity in young rats,” Neurobiol. Learn. Mem., 164, 107066 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pritvorova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 73, No. 4, pp. 537–549, July–August, 2023.

V. A. Otellin is deceased.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, V.I., Pritvorova, A.V., Akulova, V.K. et al. Salifen Prevents Perinatal Hypoxia-Induced Cognitive Impairments and Changes in the Expression of GABAB Receptors in the Rat Neocortex. Neurosci Behav Physi 53, 1593–1601 (2023). https://doi.org/10.1007/s11055-023-01554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01554-x

Keywords

Navigation