Skip to main content

Advertisement

Log in

Neurobiological Factors of Executive Dysfunction in Autism Spectrum Disorders

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Autism is a developmental disorder characterized by difficulties in social interaction and a tendency to stereotypical behavior. Neuropsychological deficit in executive functions – cognitive flexibility, inhibitory control, working memory, etc. – makes a significant contribution to the development of these symptoms. The key role in these processes is played by the prefrontal and cingulate areas of the cortex, which are regulated by cerebral neuromodulatory systems including cholinergic, noradrenergic, serotonergic, and dopaminergic ergicities. In the early stages of brain development, neuromodulators operate as neurotrophic factors and regulate the balance of arousal and inhibition in the cerebral cortex. The pathogenesis of autism may be associated with impaired metabolism of one or more neuromodulators. The purpose of this review is to consider the role of neuromodulators in the formed and developing brain and the contribution made by neuromodulator imbalance to the development of autism symptoms in children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdulamir, H. A., Abdul-Rasheed, O. F., and Abdulghani, E. A., “Serotonin and serotonin transporter levels in autistic children,” Saudi Med. J., 39, No. 5, 487 (2018).

  • Abrahams, B. S. and Geschwind, D. H., “Advances in autism genetics: on the threshold of a new neurobiology,” Nat. Rev. Genet., 9, No. 5, 341–355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, N. C. and Jarrold, C., “Inhibition in autism: Children with autism have difficulty inhibiting irrelevant distractors but not prepotent responses,” J. Autism Dev. Disord., 42, No. 6, 1052–1063 (2012).

    Article  PubMed  Google Scholar 

  • Ames, J. L., Ladd-Acosta, C., Fallin, M. D., et al., “Maternal psychiatric conditions, treatment with selective serotonin reuptake inhibitors, and neurodevelopmental disorders,” Biol. Psychiatry, 90, No. 4, 253–262 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasiades, P. G., Boada, C., and Carter, A. G., “Cell-type-specific D1 dopamine receptor modulation of projection neurons and interneurons in the prefrontal cortex,” Cereb. Cortex, 29, No. 7, 3224–3242 (2019).

    Article  PubMed  Google Scholar 

  • Anderson, P., “Assessment and development of executive function (EF) during childhood,” Child Neuropsychol., 8, No. 2, 71–82 (2002).

    Article  PubMed  Google Scholar 

  • Arciuli, J., “The multi-component nature of statistical learning,” Phil. Trans. R. Soc. B. Biol. Sci., 372, No. 1711, 20160058 (2017).

  • Bailey, A., Le Couteur, A., Gottesman, I., et al., “Autism as a strongly genetic disorder: evidence from a British twin study,” Psychol. Med., 25, No. 1, 63–77 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Barnard-Brak, L., Watkins, L., and Richman, D. M., “Examining the correlation between symptoms of obsessive compulsive disorder and autism spectrum disorder in a community-based sample of adults,” Psychiatry Res., 299, 113826 (2021).

    Article  PubMed  Google Scholar 

  • Bast, N., Poustka, L., and Freitag, C. M., “The locus coeruleus–norepinephrine system as pacemaker of attention – a developmental mechanism of derailed attentional function in autism spectrum disorder,” Eur. J. Neurosci., 47, No. 2, 115–125 (2018).

    Article  PubMed  Google Scholar 

  • Batterink, L. J., Paller, K. A., and Reber, P. J., “Understanding the neural bases of implicit and statistical learning,” Top. Cogn. Sci., 11, No. 3, 482–503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumeister, S., Moessnang, C., Bast, N., et al., “Attenuated anticipation of social and monetary rewards in autism spectrum disorders,” BioRxiv, (2020).

  • Bechara, A., Damasio, A. R., Damasio, H., and Anderson, S. W., “Insensitivity to future consequences following damage to human prefrontal cortex,” Cognition, 50, No. 1–3, 7–15 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Bechara, A., Damasio, A. R., Damasio, H., et al., “On the relationship between response selection and response inhibition: An individual differences approach,” Atten. Percept. Psychophys., 78, No. 8, 2420–2432 (2016).

    Article  Google Scholar 

  • Brown, H. D., Amodeo, D. A., Sweeney, J. A., and Ragozzino, M. E., “The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning,” J. Psychopharmacol., 26, No. 11, 1443–1455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, M. R., Benoit, J. R., Juhás, M., et al., “fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents,” Front. Syst. Neurosci., 9, 124 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlisi, C. O., Norman, L., Murphy, C. M., et al., “Shared and disorder-specific neurocomputational mechanisms of decision-making in autism spectrum disorder and obsessive-compulsive disorder,” Cereb. Cortex, 27, No. 12, 5804–5816 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmo, J. C., Duarte, E., Souza, C., et al., “Brief report: Testing the impairment of initiation processes hypothesis in autism spectrum disorder,” J. Autism. Dev. Disord., 47, No. 4, 1256–1260 (2017).

    Article  PubMed  Google Scholar 

  • Carp, J., Halenar, M. J., Quandt, L. C., et al., “Perceived similarity and neural mirroring: evidence from vicarious error processing,” Soc. Neurosci., 4, No. 1, 85–96 (2009).

    Article  PubMed  Google Scholar 

  • Carter, C. S., “Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders?” Behav. Brain Res., 176, No. 1, 170–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Chai, W. J., Abd Hamid, A. I., and Abdullah, J. M., “Working memory from the psychological and neurosciences perspectives: A review,” Front. Psychol., 9 (2018).

  • Chantiluke, K., Barrett, N., Giampietro, V., et al., “Inverse effect of fluoxetine on medial prefrontal cortex activation during reward reversal in ADHD and autism,” Cereb. Cortex, 25, No. 7, 1757–1770 (2015).

    Article  PubMed  Google Scholar 

  • Cheroni, C., Caporale, N., and Testa, G., “Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology,” Mol. Autism, 11, No. 1, 1–18 (2020).

    Article  Google Scholar 

  • Cools, R. and D’Esposito, M., “Inverted-U-shaped dopamine actions on human working memory and cognitive control,” Biol. Psychiatry, 69, No. 12, e113–e125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, R. P. and Marsh, V., “Set-shifting as a component process of goal-directed problem-solving,” Psychol. Res., 80, No. 2, 307–323 (2016).

    Article  PubMed  Google Scholar 

  • Coundouris, S. P., Adams, A. G., and Henry, J. D., “Empathy and theory of mind in Parkinson’s disease: A meta-analysis,” Neurosci. Biobehav. Rev., 109, 92–102 (2020).

    Article  PubMed  Google Scholar 

  • Crawley, D., Zhang, L., Jones, E. J., et al., “Modeling flexible behavior in childhood to adulthood shows age-dependent learning mechanisms and less optimal learning in autism in each age group,” PLoS Biol., 18, No. 10, e3000908 (2020).

  • Cui, T., Wang, P. P., Liu, S., and Zhang, X., “P300 amplitude and latency in autism spectrum disorder: a meta-analysis,” Eur. Chil. Adolesc. Psychiatry, 26, No. 2, 177–190 (2017).

    Article  Google Scholar 

  • D’Cruz, A. M., Mosconi, M. W., Ragozzino, M. E., et al., “Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders,” Transl. Psychiatry, 6, e916 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Daluwatte, C., Miles, J. H., Christ, S. E., et al., “Atypical pupillary light reflex and heart rate variability in children with autism spectrum disorder,” J. Autism Dev. Disord., 43, 1910–25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • De la Vega, A., Brown, M. S., Snyder, H. R., et al., “Individual differences in the balance of GABA to glutamate in pFC predict the ability to select among competing options,” J. Cogn. Neurosci., 26, No. 11, 2490–2502 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries, L., Fouquaet, I., Boets, B., et al., “Autism spectrum disorder and pupillometry: A systematic review and meta-analysis,” Neurosci. Biobehav. Rev., 120, 479–508 (2021).

    Article  PubMed  Google Scholar 

  • Demetriou, E. A., DeMayo, M. M., and Guastella, A. J., “Executive function in autism spectrum disorder: History, theoretical models, empirical findings and potential as an endophenotype,” Front. Psychiatry, 10, 753 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC (2013), 5th ed.

  • DiCriscio, A. S. and Troiani, V., “Resting and functional pupil response metrics indicate features of reward sensitivity and ASD in children,” J. Autism. Dev. Disord., 1–20 (2020).

  • Dillon, D. G. and Pizzagalli, D. A., “Inhibition of action, thought, and emotion: A selective neurobiological review,” Appl. Prev. Psychol., 12, No. 3, 99–114 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois, M., Habicht, J., Michely, J., et al., “Human complex exploration strategies are enriched by noradrenaline-modulated heuristics,” eLife, 10, e59907 (2021).

  • Dwyer, J. B., Broide, R. S., and Leslie, F. M., “Nicotine and brain development,” Birth Defects Res. C. Embryo Today, 84, 30–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Eigsti, I.-M. and Irvine, C. A., “Verbal mediation of theory of mind in verbal adolescents with autism spectrum disorder,” Lang. Acquis., 28, No. 2, 195–213 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Eissa, N., Al-Houqani, M., Sadeq, A., et al., “Current enlightenment about etiology and pharmacological treatment of autism spectrum disorder,” Front. Neurosci., 12, 304 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Erika-Florence, M., Leech, R., and Hampshire, A., “A functional network perspective on response inhibition and attentional control,” Nat. Commun., 5, No. 1, 4073 (2014).

  • Ernst, M., Zametkin, A. J., Matochik, J. A., et al., “Low medial prefrontal dopaminergic activity in autistic children,” Lancet, 350, 638 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Evans, A. H., Katzenschlager, R., Paviour, D., et al., “Punding in Parkinson’s disease: its relation to the dopamine dysregulation syndrome,” Mov. Disord., 19, No. 4, 397–405 (2004).

    Article  PubMed  Google Scholar 

  • Fan Siu, N. Y. and Jiaying, L. E. J., “A review of the verbal memory profile of individuals with autism spectrum disorder,” J. Psychol. Clin. Psychiatry, 2, No. 1) (2014), https://doi.org/10.15406/jpcpy.2014.02.00054.

  • Fan, X. F., Miles, J. H., Takahashi, N., and Yao, G., “Abnormal transient pupillary light reflex in individuals with autism spectrum disorders,” J. Autism Dev. Disord., 39, 1499–508 (2009).

    Article  PubMed  Google Scholar 

  • Foti, F., De Crescenzo, F., Vivanti, G., et al., “Implicit learning in individuals with autism spectrum disorders: a meta-analysis,” Psychol. Med., 45, No. 5, 897–910 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Friedman, L. and Sterling, A. A., “Review of language, executive function, and intervention in autism spectrum disorder,” Semin. Speech Lang., 40, No. 4, 291–304 (2019), https://doi.org/https://doi.org/10.1055/s-0039-1692964.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman, N. P. and Robbins, T. W., “The role of prefrontal cortex in cognitive control and executive function,” Neuropsychopharmacology, 47, No. 1, 72–89 (2022).

    Article  PubMed  Google Scholar 

  • Gabriele, S., Sacco, R., and Persico, A. M., “Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis,” Eur. Neuropsychopharmacol., 24, 919–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Gandhi, T. and Lee, C. C., “Neural mechanisms underlying repetitive behaviors in rodent models of autism spectrum disorders,” Front. Cell. Neurosci., 14, 592710 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Madruga, J. A., Gómez-Veiga, I., and Vila, J. Ó., “Executive functions and the improvement of thinking abilities: The intervention in reading comprehension,” Front. Psychol., 7, 58 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gialloreti, L. E., Mazzone, L., Benvenuto, A., et al., “Risk and protective environmental factors associated with autism spectrum disorder: Evidence-based principles and recommendations,” J. Clin. Med., 8, No. 2 (2019).

  • Goldberg, T. E., Maltz, A., et al., “Blink rate abnormalities in autistic and mentally retarded children: relationship to dopaminergic activity,” J. Am. Acad. Child. Adolesc. Psychiatry, 26, No. 3, 336–338 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Grabrucker, A. M., “Environmental factors in autism,” Front. Psychiatry, 3, 118 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Granovetter, M. C., Burlingham, C. S., Blauch, N. M., et al., “Uncharacteristic task-evoked pupillary responses implicate atypical locus ceruleus activity in autism,” J. Neurosci., 40, No. 19, 3815–3826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber, S. N., “The place of dopamine in the cortico-basal ganglia circuit,” Neuroscience, 282C, 248–257 (2014).

    Article  Google Scholar 

  • Habib, A., Harris, L., Pollick, F., and Melville, C., “A meta-analysis of working memory in individuals with autism spectrum disorders,” PLoS One, 14, No. 4 (2019).

  • Henderson, H., Schwartz, C., Mundy, P., et al., “Response monitoring, the error-related negativity, and differences in social behavior in autism,” Brain Cogn., 61, No. 1, 96–109 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland, L. and Low, J., “Do children with autism use inner speech and visuospatial resources for the service of executive control? Evidence from suppression in dual tasks,” Brit. J. Dev. Psychol., 28, No. 2, 369–391 (2010).

    Article  Google Scholar 

  • Hollander, E., Soorya, L., Chaplin, W., et al., “A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders,” Am. J. Psychiatry, 169, No. 3, 292–299 (2012).

    Article  PubMed  Google Scholar 

  • Hollocks, M. J., Lerh, J. W., Magiati, I., et al., “Anxiety and depression in adults with autism spectrum disorder: a systematic review and meta-analysis,” Psychol. Med., 49, No. 4, 559–572 (2019).

    Article  PubMed  Google Scholar 

  • Holloway, Z. R., Freels, T. G., Comstock, J. F., et al., “Comparing phasic dopamine dynamics in the striatum, nucleus accumbens, amygdala, and medial prefrontal cortex,” Synapse, 73, No. 2, e22074 (2019).

    Google Scholar 

  • Holroyd, C. B., Nieuwenhuis, S., Yeung, N., et al., “Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals,” Nat. Neurosci., 7, No. 5, 497–498 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Homberg, J. R., “Serotonin and decision making processes,” Neurosci. Biobehav. Rev., 36, No. 1, 218–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Hornung, T., Chan, W. H., et al., “Dopaminergic hypo-activity and reduced theta-band power in autism spectrum disorder: A resting-state EEG study,” Int. J. Psychophysiol., 146, 101–106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosenbocus, S. and Chahal, R., “A review of executive function deficits and pharmacological management in children and adolescents,” J. Can. Acad. Child Adolesc. Psychiatry, 21, No. 3, 223 (2012).

  • Hudson, C. C., Hall, L., and Harkness, K. L., “Prevalence of depressive disorders in individuals with autism spectrum disorder: A meta-analysis,” J. Abnorm.Child Psychol., 47, No. 1, 165–175 (2019).

    Article  PubMed  Google Scholar 

  • Hüpen, P., Groen, Y., Gaastra, G. F., et al., “Performance monitoring in autism spectrum disorders: A systematic literature review of eventrelated potential studies,” Int. J. Psychophysiol., 102, 33–46 (2016).

    Article  PubMed  Google Scholar 

  • Jahromi, L. B., Chen, Y., Dakopolos, A. J., and Chorneau, A., “Delay of gratification in preschoolers with and without autism spectrum disorder: Individual differences and links to executive function, emotion regulation, and joint attention,” Autism, 23, No. 7, 1720–1731 (2019).

    Article  PubMed  Google Scholar 

  • Johnson, S. A., Yechiam, E., Murphy, R. R., et al., “Motivational processes and autonomic responsivity in Asperger’s disorder: evidence from the Iowa Gambling Task,” J. Int. Neuropsychol. Soc., 12, No. 05, 668–676 (2006).

    Article  PubMed  Google Scholar 

  • Johnston, K., Murray, K., Spain, D., et al., “Executive function: cognition and behaviour in adults with autism spectrum disorders (ASD),” J. Autism Dev. Disord., 49, No. 10, 4181–4192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, C. R., Simonoff, E., Baird, G., et al., “The association between theory of mind, executive function, and the symptoms of autism spectrum disorder,” Autism Res., 11, No. 1, 95–109 (2018).

    Article  PubMed  Google Scholar 

  • Karalunas, S. L., Hawkey, E., Gustafsson, H., et al., “Overlapping and distinct cognitive impairments in attention-deficit/hyperactivity and autism spectrum disorder without intellectual disability,” J. Abnorm. Child Psychol., 46, No. 8, 1705–1716 (2018), https://doi.org/https://doi.org/10.1007/s10802-017-0394-102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karemaker, J. M., “An introduction into autonomic nervous function,” Physiol. Meas., 38, No. 5, R89 (2017).

  • Kercood, S., Grskovic, J. A., Banda, D., and Begeske, J., “Working memory and autism: A review of literature,” Res. Autism. Spectr. Disord., 8, No. 10, 1316–1332 (2014).

    Article  Google Scholar 

  • Kessels, R. P. C., Overbeek, A., and Bouman, Z., “Assessment of verbal and visuospatial working memory in mild cognitive impairment and Alzheimer’s dementia,” Dement. Neuropsychol., 9, No. 3, 301–305 (2015), https://doi.org/https://doi.org/10.1590/1980-57642015DN93000014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khemir, S., Halayem, S., Azzouz, H., et al., “Autism in phenylketonuria patients: from clinical presentation to molecular defects,” J. Child Neurol., 31, No. 7, 843–849 (2016).

    Article  PubMed  Google Scholar 

  • Khundrakpam, B., Tuerk, C., and Booij, L., “Understanding heterogeneity in autism spectrum disorder: a methodological shift in neuroimaging research from investigating group differences to individual differences,” Biol. Psychiatry. Cogn. Neurosci. Neuroimag., 6, No. 8, 762–764 (2021).

    Google Scholar 

  • Kini, U., Adab, N., Vinten, J., et al., “Dysmorphic features: an important clue to the diagnosis and severity of fetal anticonvulsant syndromes,” Arch. Dis. Child. Fetal Neonatal Ed., 91, No. 2, F90–F95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knutson, B. and Cooper, J. C., “Functional magnetic resonance imaging of reward prediction,” Curr. Opin. Neurol., 18, No. 4, 411–417 (2005).

    Article  PubMed  Google Scholar 

  • Kobayashi, M., Imamura, K., Sugai, T., et al., “Selective suppression of horizontal propagation in rat visual cortex by norepinephrine,” Eur. J. Neurosci., 12, 264–272 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kohls, G., Schulte-Rüther, M., Nehrkorn, B., et al., “Reward system dysfunction in autism spectrum disorders,” Soc. Cogn. Affect. Neurosci., 8, No. 5, 565–572 (2013).

    Article  PubMed  Google Scholar 

  • Kouklari, E. C., Tsermentseli, S., and Monks, C. P., “Developmental trends of hot and cool executive function in school aged children with and without autism spectrum disorder: links with theory of mind,” Develop. Psychopathol., 31, No. 2, 541–556 (2018).

    Article  Google Scholar 

  • Lackner, C. L., Bowman, L. C., and Sabbagh, M. A., “Dopaminergic functioning and preschoolers’ theory of mind,” Neuropsychologia, 48, No. 6, 1767–1774 (2010).

    Article  PubMed  Google Scholar 

  • Landry, O. and Al-Taie, S., “A meta-analysis of the Wisconsin Card Sort Task in autism,” J. Autism. Dev. Disord., 46, No. 4, 1220–1235 (2016).

    Article  PubMed  Google Scholar 

  • Larson, C., Gangopadhyay, I., Prescott, K., et al., “Planning in children with autism spectrum disorder: The role of verbal mediation,” J. Autism Dev. Disord., publ. online Sept. 15, 2020.

  • Larson, M. J. and Clayson, P. E., “The relationship between cognitive performance and electrophysiological indices of performance monitoring,” Cogn. Affect. Behav. Neurosci., 11, No. 2, 159–171 (2011).

    Article  PubMed  Google Scholar 

  • Larson, M. J., Fair, J. E., Good, D. A., and Baldwin, S. A., “Empathy and error processing,” Psychophysiology, 47, No. 3, 415–424 (2010).

    Article  PubMed  Google Scholar 

  • Lau, W. Y. P., Peterson, C. C., Attwood, T., et al., “Parents on the autism continuum: Links with parenting efficacy,” Res. Autism. Spectr. Disord., 26, 57–64 (2016).

    Article  Google Scholar 

  • Lee, A., Choo, H., and Jeon, B., “serotonin receptors as therapeutic targets for autism spectrum disorder treatment,” Int. J. Mol. Sci., 23, No. 12, 6515 (2022).

  • Leedham, A., Thompson, A. R., Smith, R., and Freeth, M., “’I was exhausted trying to figure it out’: The experiences of females receiving an autism diagnosis in middle to late adulthood,” Autism, 24, No. 1, 135–146 (2020).

    Article  PubMed  Google Scholar 

  • Lehnhardt, F. G., Gawronski, A., Volpert, K., et al., “Psychosocial functioning of adults with late diagnosed autism spectrum disorders – a retrospective study,” Fortschr. Neurologie-Psychiatrie, 80, No. 2, 88–97 (2011).

    Article  Google Scholar 

  • Leshem, R., Bar-Oz, B., Diav-Citrin, O., et al., “Selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs) during pregnancy and the risk for autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) in the offspring: a true effect or a bias? A systematic review & meta-analysis,” Curr. Neuropharmacol., 19, No. 6, 896–906 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy, B. J. and Wagner, A. D., “Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating,” Ann. N.Y. Acad. Sci., 1224, No. 1, 40–62 (2011).

  • Lin, A., Adolphs, R., and Rangel, A., “Social and monetary reward learning engage overlapping neural substrates,” Soc. Cogn. Affect. Neurosci., 7, No. 3, 274–281 (2012).

    Article  PubMed  Google Scholar 

  • Liu, J., Tsang, T., Ponting, C., et al., “Lack of neural evidence for implicit language learning in 9-month-old infants at high risk for autism,” Dev. Sci., 24, No. 4, e13078 (2021).

  • Liu, X., Sun, X., Sun, C., et al., “Prevalence of epilepsy in autism spectrum disorders: A systematic review and meta-analysis,” Autism, 26, No. 1, 33–50 (2022).

    Article  PubMed  Google Scholar 

  • Logue, S. F. and Gould, T. J., “The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition,” Pharmacol. Biochem. Behav., 123, 45–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  • London, E. B., “Neuromodulation and a reconceptualization of autism spectrum disorders: Using the locus coeruleus functioning as an exemplar,” Front. Neurol., 9, 1120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopatina, O. L., Komleva, Y. K., Gorina, Y. V., et al., “Oxytocin and excitation/ inhibition balance in social recognition,” Neuropeptides, 72, 1–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Lopez, B. R., Lincoln, A. J., Ozonoff, S., and Lai, Z., “Examining the relationship between executive functions and restricted, repetitive symptoms of autistic disorder,” J. Autism. Dev. Disord., 35, No. 4, 445–460 (2005).

    Article  PubMed  Google Scholar 

  • Lum, J. A. G., Conti-Ramsden, G., Page, D., and Ullman, M. T., “Working, declarative and procedural memory in specific language impairment,” Cortex, 48, No. 9, 1138–1154 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mannion, A. and Leader, G., “Comorbidity in autism spectrum disorder: A literature review,” Res. Autism. Spectr. Disord., 7, No. 12, 1595–1616 (2013).

    Article  Google Scholar 

  • Manyukhina, V. O., Prokofyev, A. O., Galuta, I. A., et al., “Globally elevated excitation–inhibition ratio in children with autism spectrum disorder and below-average intelligence,” Mol. Autism, 13, No. 1, 1–14 (2022).

    Article  Google Scholar 

  • Martineau, J., Hernandez, N., Hiebel, L., et al., “Can pupil size and pupil responses during visual scanning contribute to the diagnosis of autism spectrum disorder in children?” J. Psychiatr. Res., 45, No. 8, 1077–1082 (2011).

    Article  PubMed  Google Scholar 

  • Mawson, A. R. and Croft, A. M., “Rubella virus infection, the congenital rubella syndrome, and the link to autism,” Int. J. Environ. Res. Public Health, 16, No. 19, 3543 (2019).

  • May, K. E. and Kana, R. K., “Frontoparietal network in executive functioning in autism spectrum disorder,” Autism Res., 13, No. 10, 1762–1777 (2020).

    Article  PubMed  Google Scholar 

  • Miller, E. K. and Cohen, J. D., “An integrative theory of prefrontal cortex function,” Annu. Rev. Neurosci., 24, No. 1, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mogadam, A., Keller, A. E., Arnold, P. D., et al., “Magnetoencephalographic (MEG) brain activity during a mental flexibility task suggests some shared neurobiology in children with neurodevelopmental disorders,” J. Neurodevelop. Disord., 11, No. 1, 19 (2019).

  • Mohlman, J. and DeVito, A., “The impact of social threat cues on a card sorting task with attentional-shifting demands,” J. Behav. Ther. Exp. Psychiatry, 57, 45–52 (2017).

    Article  PubMed  Google Scholar 

  • Moran, R. J., Campo, P., Symmonds, M., et al., “Free energy, precision and learning: the role of cholinergic neuromodulation,” J. Neurosci., 33, 8227–8236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss, J. and Howlin, P., “Autism spectrum disorders in genetic syndromes: implications for diagnosis, intervention and understanding the wider autism spectrum disorder population,” J. Intellect. Disabil. Res., 53, No. 10, 852–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Mukaetova-Ladinska, E. B., Westwood, J., and Perry, E. K., “Cholinergic component of autism spectrum disorder,” in: The Neurochemical Basis of Autism, Springer, Boston, MA (2010), pp. 129–161.

  • Murphy, C. M., Christakou, A., Giampietro, V., et al., “Abnormal functional activation and maturation of ventromedial prefrontal cortex and cerebellum during temporal discounting in autism spectrum disorder,” Hum. Brain Mapp., 38, No. 11, 5343–5355 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy, D. G., Daly, E., Schmitz, N., et al., “Cortical serotonin 5-HT2A receptor binding and social communication in adults with Asperger’s syndrome: an in vivo SPECT study,” Am J. Psychiatry, 163, No. 5, 934–936 (2006).

    Article  PubMed  Google Scholar 

  • Mussey, J. L., Travers, B. G., Klinger, L. G., and Klinger, M. R., “Decisionmaking skills in ASD: performance on the Iowa Gambling Task,” Autism Res., 8, No. 1, 105–114 (2015).

    Article  PubMed  Google Scholar 

  • Myers, L., Pan, P. Y., Remnélius, K. L., et al., “Behavioral and biological divergence in monozygotic twin pairs discordant for autism phenotypes: A systematic review,” JCPP Advances, 1, No. 2, e12017 (2021).

    Google Scholar 

  • Nejati, V., “Working memory in autism spectrum disorders: does the type of stimulus matter?” Early Child Dev. Care, 191, No. 11, 1–8 (2019).

    Google Scholar 

  • Nomura, T., “Interneuron dysfunction and inhibitory deficits in autism and fragile X syndrome,” Cells, 10, No. 10, 2610 (2021).

    CAS  Google Scholar 

  • Nyström, P., Gliga, T., Nilsson Jobs, E., et al., “Enhanced pupillary light reflex in infancy is associated with autism diagnosis in toddlerhood,” Nat. Commun., 9, No. 1, 1–5 (2018).

    Article  Google Scholar 

  • Nyström, P., Gredebäck, G., Bölte, S., and Falck-Ytter, T., “Hypersensitive pupillary light reflex in infants at risk for autism,” Mol. Autism, 6, No. 1, 1–6 (2015).

    Article  Google Scholar 

  • Oakhill, J., Yuill, N., and Garnham, A., “The differential relations between verbal, numerical and spatial working memory abilities and children’s reading comprehension,” Int. Electr. J. Elementary Education, 4, No. 1 (2011), publ. online 2011, https://core.ac.uk/display/9551752, acc. March 1, 2011.

  • Olde Dubbelink, L. M. E. and Geurts, H. M., “Planning skills in autism spectrum disorder across the lifespan: A meta-analysis and meta-regression,” J. Autism. Dev. Disord., 47, No. 4, 1148–1165 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ott, T. and Nieder, A., “Dopamine and cognitive control in prefrontal cortex,” Trends Cogn. Sci., 23, No. 3, 213–234 (2019).

    Article  PubMed  Google Scholar 

  • Ozonoff, S., Pennington, B. F., and Rogers, S. J., “Executive function deficits in high-functioning autistic individuals: relationship to theory of mind,” J. Child Psychol. Psychiatry, 32, No. 7, 1081–1105 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Pasciuto, E., Borrie, S. C., Kanellopoulos, A. K., et al., “Autism spectrum disorders: translating human deficits into mouse behavior,” Neurobiol. Learn. Mem., 124, 71–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Pavăl, D. and Micluția, I. V., “The dopamine hypothesis of autism spectrum disorder revisited: current status and future prospects,” Dev. Neurosci., 43, No. 2, 73–83 (2021).

    Article  PubMed  Google Scholar 

  • Perry, E. K., Lee, M., Martin-Ruiz, C. M., et al., “Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain,” Am. J. Psychiatry, 158, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Pessoa, L., “How do emotion and motivation direct executive control?” Trends Cogn. Sci., 13, No. 4, 160–166 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Philip, R. C., Dauvermann, M. R., Whalley, H. C., et al., “A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders,” Neurosci. Biobehav. Rev., 36, No. 2, 901–942 (2012).

    Article  PubMed  Google Scholar 

  • Pinto, L., Goard, M. J., Estandian, D., et al., “Fast modulation of visual perception by basal forebrain cholinergic neurons,” Nat. Neurosci., 16, 1857–1863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porges, S. W., “The vagus: a mediator of behavioral and physiologic features associated with autism,” Neurobiol. Autism, 2, 65–77 (2005).

    Google Scholar 

  • Prado, V. F., Janickova, H., Al-Onaizi, M. A., and Prado, M. A., “Cholinergic circuits in cognitive flexibility,” Neuroscience, 345, 130–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Prohl, A. K., Scherrer, B., Tomas-Fernandez, X., et al., “Early white matter development is abnormal in tuberous sclerosis complex patients who develop autism spectrum disorder,” J. Neurodev. Disorder., 11, No. 1, 1–16 (2019).

    Article  Google Scholar 

  • Rasalam, A. D., Hailey, H., Williams, J. H. G., et al., “Characteristics of fetal anticonvulsant syndrome associated autistic disorder,” Dev. Med. Child Neurol., 47, No. 8, 551–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Rong, Y., Yang, C. J., Jin, Y., and Wang, Y., “Prevalence of attention-deficit/ hyperactivity disorder in individuals with autism spectrum disorder: a meta-analysis,” Res. Autism. Spectr. Disord., 83, 101759 (2021).

    Article  Google Scholar 

  • Rubenstein, E. and Devika, C., “Broader autism phenotype in parents of children with autism: A systematic review of percentage estimates,” J. Child Fam. Stud., 27, No. 6, 1705–1720 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell, G., Mandy, W., Elliott, D., et al., “Selection bias on intellectual ability in autism research: A cross-sectional review and meta-analysis,” Mol. Autism, 10, No. 1, 1–10 (2019).

    Article  CAS  Google Scholar 

  • Saad, A. K., Akour, A., Mahboob, A., et al., “Role of brain modulators in neurodevelopment: focus on autism spectrum disorder and associated comorbidities,” Pharmaceuticals, 15, No. 5, 612 (2022).

    Google Scholar 

  • Sáenz, A. A., Septier, M., Van Schuerbeek, P., et al., “ADHD and ASD: distinct brain patterns of inhibition-related activation?” Transl. Psychiatry, 10, No. 1, 1–10 (2020).

    Google Scholar 

  • Salehinejad, M. A., Ghanavati, E., Rashid, M. H. A., and Nitsche, M. A., “Hot and cold executive functions in the brain: A prefrontal-cingular network,” Brain Neurosci. Adv., 5, 23982128211007769 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, S. J., He, X., Willsey, A. J., et al., “Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci,” Neuron, 87, No. 6, 1215–1233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saniee, S., Pouretemad, H. R., and Zardkhaneh, S. A., “Developing set-shifting improvement tasks (SSIT) for children with high-functioning autism,” J. Intellect. Disabil. Res., 63, No. 10, 1207–1220 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Satterthwaite, T. D., Ruparel, K., Loughead, J., et al., “Being right is its own reward: load and performance related ventral striatum activation to correct responses during a working memory task in youth,” NeuroImage, 61, No. 3, 723–729 (2012).

    Article  PubMed  Google Scholar 

  • Schneebeli, M., Haker, H., Rüesch, A., et al., “Disentangling “Bayesian brain” theories of autism spectrum disorder,” medRxiv, (2022).

  • Scott-Van Zeeland, A. A., Dapretto, M., Ghahremani, D. G., and Poldrack, R. A., “Reward processing in autism,” Autism Res., 3, 53–67 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenova, A. A., Lopatina, O. L., and Salmina, A. B., “Models of autism and methods of assessing autistic-like behavior in animals,” Zh. Vyssh. Nerv. Deyat., 70, No. 2, 147–162 (2020).

    Google Scholar 

  • Solomon, M., Frank, M. J., Ragland, J. D., et al., “Feedback-driven trial- by-trial learning in autism spectrum disorders,” Am. J. Psychiatry, 172, 173–181 (2015).

    Article  PubMed  Google Scholar 

  • Solomon, M., Smith, A. C., Frank, M. J., et al., “Probabilistic reinforcement learning in adults with autism spectrum disorders,” Autism Res., 4, No. 2, 109–120 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • South, M., Chamberlain, P. D., Wigham, S., et al., “Enhanced decision making and risk avoidance in high-functioning autism spectrum disorder,” Neuropsychology, 28, No. 2, 222–228 (2014).

    Article  PubMed  Google Scholar 

  • Sparks, D. W., Proulx, É., and Lambe, E. K., “Ready, set, and go: the bridging of attention to action by acetylcholine in prefrontal cortex,” J. Physiol., 596, No. 9, 1539 (2018).

  • Spreckelmeyer, K. N., Krach, S., Kohls, G., et al., “Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women,” Soc. Cogn. Affect. Neurosci., 4, No. 2, 158–165 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • St. John, T., Woods, S., Bode, T., et al., “A review of executive functioning challenges and strengths in autistic adults,” Clin. Neuropsychol., 1–32 (2021).

  • Sugita, K., Ando, M., Makino, M., et al., “Magnetic resonance imaging of the brain in congenital rubella virus and cytomegalovirus infections,” Neuroradiology, 33, No. 3, 239–242 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Supekar, K., Kochalka, J., Schaer, M., et al., “Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism,” Brain, 141, No. 9, 2795–2805 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Sydor, A. and Brown, R., “Widely projecting systems: monoamines, acetylcholine, and orexin,” in: Neuropharmacology: A Foundation for Clinical Neuroscience, Nestler, E. J. et al. (eds.), McGraw-Hill Medical, New York (2001), 2nd ed.

  • Tartaglione, A. M., Schiavi, S., Calamandrei, G., and Trezza, V., “Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder,” Neuropharmacology, 159, 107477 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Thapar, A. and Rutter, M., “Genetic advances in autism,” J. Autism. Dev. Disord., 51, No. 12, 4321–4332 (2021).

    Article  PubMed  Google Scholar 

  • Tiego, J., Testa, R., Bellgrove, M. A., et al., “A hierarchical model of inhibitory control,” Front. Psychol., 9 (2018).

  • Tonizzi, I., Giofrè, D., and Usai, M. C., “Inhibitory control in autism spectrum disorders: Meta-analyses on indirect and direct measures,” J. Autism. Dev. Disord., 1–17 (2021).

  • Tschida, J. E. and Yerys, B. E., “A systematic review of the positive valence system in autism spectrum disorder,” Neuropsychol. Rev., 31, No. 1, 58–88 (2021).

    Article  PubMed  Google Scholar 

  • Unterrainer, J. M., Rahm, B., Halsband, U., and Kaller, C. P., “What is in a name: comparing the Tower of London with one of its variants,” Brain Res. Cogn. Brain Res., 23, No. 2–3, 418–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Unterrainer, J. M., Rauh, R., and Rahm, B., “Development of planning in children with high-functioning autism spectrum disorders and/or attention deficit/hyperactivity disorder,” Autism Res., 9, No. 7, 739–751 (2016).

    Article  PubMed  Google Scholar 

  • Utkin, Y. N., “Aging affects nicotinic acetylcholine receptors in brain,” Cent. Nerv. Syst. Agents Med. Chem., 19, No. 2, 119–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Vatsa, N. and Jana, N. R., “UBE3A and its link with autism,” Front. Mol. Neurosci., 11, 448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma, S., Kumar, A., Tripathi, T., and Kumar, A., “Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy,” J. Pharm. Pharmacol., 70, No. 8, 985–993 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Virag, M., Janacsek, K., et al., “Competition between frontal lobe functions and implicit sequence learning: evidence from the long-term effects of alcohol,” Exp. Brain Res., 233, No. 7, 2081–2089 (2015).

    Article  PubMed  Google Scholar 

  • Wang, Y., Zhang, Y., Liu, L. L., et al., “A meta-analysis of working memory impairments in autism spectrum disorders,” Neuropsychol. Rev., 27, No. 1, 46–61 (2017).

    Article  PubMed  Google Scholar 

  • Warnell, K. R., Maniscalco, S., Baker, S., Yi, R., and Redcay, E., “Social and delay discounting in autism spectrum disorder,” Autism Res., 12, No. 6, 870–877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe, S., Kurotani, T., Oga, T., et al., “Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease,” Nat. Commun., 12, No. 1, 1–13 (2021).

    Article  Google Scholar 

  • Williams, D. L., Goldstein, G., and Minshew, N. J., “Neuropsychologic functioning in children with autism: further evidence for disordered complex information-processing,” Child Neuropsychol., 12, No. 4–5, 279–298 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, C. C. Y., Meaburn, E. L., Ronald, A., et al., “Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits,” Mol. Psychiatry, 19, No. 4, 495–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Woodruff, N., Elevated Spontaneous Blink Rate in Fragile X Syndrome Implicates Abnormal Dopaminergic Activity in FXS Pathophysiology (2019).

  • Wulffaert, J., Van Berckelaer-Onnes, I. A., and Scholte, E. M., “Autistic disorder symptoms in Rett syndrome,” Autism, 13, No. 6, 567–581 (2009).

    Article  PubMed  Google Scholar 

  • Yamaguchi, T. and Lin, D., “Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression,” Curr. Opin. Behav. Sci., 24, 104–112 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasue, M., Nakagami, A., Banno, T., et al., “Indifference of marmosets with prenatal valproate exposure to third-party non-reciprocal interactions with otherwise avoided non-reciprocal individuals,” Behav. Brain Res., 292, 323–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Yechiam, E., Arshavsky, O., Shamay-Tsoory, S. G., et al., “Adapted to explore: reinforcement learning in autistic spectrum conditions,” Brain Cogn., 72, No. 2, 317–324 (2010).

    Article  PubMed  Google Scholar 

  • Yeung, M. K., Lee, T. L., and Chan, A. S., “Right-lateralized frontal activation underlies successful updating of verbal working memory in adolescents with high-functioning autism spectrum disorder,” Biol. Psychol., 148, 107743 (2019).

    Article  PubMed  Google Scholar 

  • Zalla, T., Sav, A. M., and Leboyer, M., “Stimulus-reward association and reversal learning in individuals with Asperger Syndrome,” Res. Autism. Spectr. Disord., 3, No. 4, 913–923 (2009).

    Article  Google Scholar 

  • Zeidan, J., Fombonne, E., Scorah, J., et al., “Global prevalence of autism: a systematic review update,” Autism Res., 15, No. 5, 778–790 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeif, D. and Yechiam, E., “Autism is not associated with poor or enhanced performance on the Iowa Gambling Task: A meta-analysis,” Neurosci. Biobehav. Rev., 113, 440–447 (2020).

    Article  PubMed  Google Scholar 

  • Zelazo, P. D. and Müller, U., “Executive function in typical and atypical development,” in: Blackwell Handbook of Childhood Cognitive Development, Goswami, U. (ed.), Blackwell Publishers Ltd., Malden, MA (2002), pp. 445–469.

    Chapter  Google Scholar 

  • Zhang, L., Tang, J., Dong, Y., et al., “Similarities and differences in decision-making impairments between Autism Spectrum Disorder and Schizophrenia,” Front. Behav. Neurosci., 9, 259 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Yan, G., Zhou, L., et al., “the influence of irrelevant visual distractors on eye movement control in chinese children with autism spectrum disorder: Evidence from the remote distractor paradigm,” J. Autism Dev. Disord., 50, No. 2, 500–512 (2020).

    Article  PubMed  Google Scholar 

  • Zhang, Y., Li, N., Li, C., et al., “Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect,” Transl. Psychiatry, 10, No. 1, 1–10 (2020).

    Article  Google Scholar 

  • Zhao, H., Wang, Q., Yan, T., et al., “Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates,” Transl. Psychiatry, 9, No. 1, 1–13 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Kozunova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 73, No. 2, pp. 147–172, March–April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozunova, G.L., Zakirov, F.K., Rytikova, A.M. et al. Neurobiological Factors of Executive Dysfunction in Autism Spectrum Disorders. Neurosci Behav Physi 53, 1158–1174 (2023). https://doi.org/10.1007/s11055-023-01512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01512-7

Keywords

Navigation