Skip to main content

Advertisement

Log in

The Neurobiological Role of Lithium Salts

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Lithium salts have been the mainstay of treatment for bipolar disorder for more than 50 years, since approval by the FDA in 1970 for the treatment of this pathology. A variety of the molecular mechanisms of action of lithium have been well studied, primarily inhibition of the enzymes glycogen synthase 3β and inositol monophosphatase, with subsequent activation of cascades of cellular reactions, including induction of brain-derived neurotrophic factor and antiapoptotic proteins and suppression of calcium-dependent activation of apoptosis. Research over the last decade has focused on the effects of lithium on the regulation of autophagy and the accumulation of pathological proteins such as amyloid β and tau protein in neurons. Lithium is also thought to induce telomere elongation and to increase telomerase activity. Clinical studies of lithium have addressed the potential for its use for the prevention and treatment of neurodegenerative diseases, primarily Alzheimer’s disease, with increasing emphasis on the use of lithium microdoses. A separate scientific problem is the search for safe and effective lithium salts using methods including chemoreactome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garrod, A. B., “The nature and treatment of gout and rheumatic gout,” Br. Foreign Med. Chir. Rev., 5, No. 50, 419–435 (1860).

    Google Scholar 

  2. Hammond, W. A., A Treatise on Diseases of the Nervous System, Appleton, New York (1871), https://doi.org/10.1017/s0368315x00003650.

    Article  Google Scholar 

  3. Shorter, E., “The history of lithium therapy,” Bipolar Disord., 11, No. 2, 4–9 (2009), https://doi.org/10.1111/j.1399-5618.2009.00706.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cade, J. F., “Lithium salts in the treatment of psychotic excitement,” Med. J. Aust., 2, No. 10, 349–352 (1949), https://doi.org/10.1080/j.1440-1614.1999.06241.x.

    Article  CAS  PubMed  Google Scholar 

  5. Noack, C. H. and Trautner, E. M., “The lithium treatment of maniacal psychosis,” Med. J. Aust., 2, No. 7, 219–222 (1951), https://doi.org/10.5694/j.1326-5377.1951.tb68249.x.

    Article  CAS  PubMed  Google Scholar 

  6. Fyro, B., “Litarex (Dumex) – A new lithium preparation,” Lakartidningen, 72, No. 51, 5079 (1975).

    Google Scholar 

  7. Morrison, J. M., Pritchard, H. D., Braude, M. C., et al., “Plasma and brain lithium levels after lithium carbonate and lithium chloride administration by different routes in rats,” Proc. Soc. Exp. Biol. Med., 137, No. 3, 889–892 (2016), https://doi.org/10.3181/00379727-137-35687.

    Article  Google Scholar 

  8. Olbrich, R., Watzl, H., Volter, M., et al., “Lithium in the treatment of chronic alcoholic patients with brain damage – A controlled study,” Nervenarzt, 62, No. 3, 182–186 (1991).

    CAS  PubMed  Google Scholar 

  9. Dunderer, M., “Lithium aspartate in drug dependence,” Fortschritte der Medizin, 100, No. 33, 1500–1502 (1982).

    Google Scholar 

  10. Persson, G., “Comparison of plasma lithium levels and their interindividual variations with coated lithium carbonate tablets and a medium slow-release lithium sulphate preparation (Lithionit Duretter),” Acta Psychiatr. Scand., 55, No. 2, 147–152 (1977), https://doi.org/10.1111/j.1600-0447.1977.tb00151.x.

    Article  CAS  PubMed  Google Scholar 

  11. Lyubimov, B. I., Tolmacheva, N. S., and Ostrovskaya, R. U., “Experimental study of the neurotropic activity of lithium oxybutyrate,” Farmakol. Toksikol., No. 3, 273–277 (1980).

  12. Shurygin, A. Ya., Kravtsov, A. A., Nemchinova, E. A., et al., “Studies of the antioxidant and neuroprotective properties of comenic acid lithium salt,” Izv. Vuzov. Sev. Kavk. Reg. Estestv. Nauki, 3, 77–79 (2012).

  13. Smith, A. J., Kim S-H, Tan, J., et al., “Plasma and brain pharmacokinetics of previously unexplored lithium salts,” RSC Adv., 4, No. 24, 12362–12365 (2014), https://doi.org/10.1039/C3RA46962J.

    Article  CAS  PubMed  Google Scholar 

  14. Lippmann, S. and Evans, R., “A comparison of three types of lithium release preparations,” Hosp. Comm. Psychiatry, 34, No. 2, 113–114 (1983), https://doi.org/10.1176/ps.34.2.113.

    Article  CAS  Google Scholar 

  15. Chokhawala, K., Lee, S., and Saadabadi, A., “Lithium,” StatPearls [Internet], StatPearls Publishing (2020).

  16. Couffignal, C., Chevillard, L., Balkhi, S., et al., “The pharmacokinetics of lithium,” in: The Science and Practice of Lithium Therapy, Springer (2016), https://doi.org/10.1007/978-3-319-45923-3_2.

  17. Nieper, H.-A., “Recalcification of bone metastases by calcium diorotate,” Agressologie, 11, No. 6, 495–500 (1970).

    CAS  PubMed  Google Scholar 

  18. Kling, M. A., Manowitz, P., and Pollack, I. W., “Rat brain and serum lithium concentrations after acute injections of lithium carbonate and orotate,” J. Pharm. Pharmacol., 30, No. 6, 368–370 (1978), https://doi.org/10.1111/j.2042-7158.1978.tb13258.x.

    Article  CAS  PubMed  Google Scholar 

  19. Smith, D. F. and Schou, M., “Kidney function and lithium concentrations of rats given an injection of lithium orotate or lithium carbonate,” J. Pharm. Pharmacol., 31, No. 3, 161–163 (1979), https://doi.org/10.1111/j.2042-7158.1979.tb13461.x.

    Article  CAS  PubMed  Google Scholar 

  20. Kharkevich, D. A. Pharmacology: A Textbook, GEOTAR-Media, Moscow (2021).

    Google Scholar 

  21. Lewitzka, U., Severus, E., Bauer, R., et al., “The suicide prevention effect of lithium: more than 20 years of evidence-a narrative review,” Int. J. Bipolar. Disord., 3, No. 1, 32 (2015), https://doi.org/10.1186/s40345-015-0032-2.

  22. Klein, P. S. and Melton, D. A., “A molecular mechanism for the effect of lithium on development,” Proc. Natl. Acad. Sci. USA, 93, No. 16, 8455–8459 (1996), https://doi.org/10.1073/pnas.93.16.8455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Damri, O., Sade, Y., Toker, L., et al., “Molecular effects of lithium are partially mimicked by inositol-monophosphatase (IMPA)1 knockout mice in a brain region-dependent manner,” Eur. Neuropsychopharmacol., 25, No. 3, 425–434 (2015), https://doi.org/10.1016/j.euroneuro.2014.06.012.

    Article  CAS  PubMed  Google Scholar 

  24. Hallcher, L. M. and Sherman, W. R., “The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain,” J. Biol. Chem., 255, 10896–10901 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Ma, J. and Zhang, G. Y., “Lithium reduced N-methyl-D-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia,” Neurosci. Lett., 348, No. 3, 185–189 (2003), https://doi.org/10.1016/s0304-3940(03)00784-5.

    Article  CAS  PubMed  Google Scholar 

  26. Aubry, J. M., Schwald, M., Ballmann, E., et al., “Early effects of mood stabilizers on the Akt/GSK-3beta signaling pathway and on cell survival and proliferation,” Psychopharmacology (Berlin), 205, No. 3, 419–429 (2009), https://doi.org/10.1007/s00213-009-1551-2.

    Article  CAS  Google Scholar 

  27. Chen, R. W. and Chuang, D. M., “Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity,” J. Biol. Chem., 274, No. 10, 6039–6042 (1999), https://doi.org/10.1074/jbc.274.10.6039.

    Article  CAS  PubMed  Google Scholar 

  28. Hiroi, T., Wei, H., Hough, C., et al., “Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, and GRP78 and Bcl-2,” Pharmacogenomics J., 5, No. 2, 102–111 (2005), https://doi.org/10.1038/sj.tpj.6500296.

    Article  CAS  PubMed  Google Scholar 

  29. Farre, J. C. and Subramani, S., “Peroxisome turnover by micropexophagy: an autophagy-related process,” Trends Cell Biol., 14, 515– 523 (2004), https://doi.org/10.1016/j.tcb.2004.07.014.

    Article  CAS  PubMed  Google Scholar 

  30. Uttenweiler, A. and Mayer, A., “Microautophagy in the yeast Saccharomyces cerevisiae,” Methods Mol. Biol., 445, 245–259 (2008), https://doi.org/10.1007/978-1-59745-157-4_16.

    Article  CAS  PubMed  Google Scholar 

  31. Levine, B. and Klionsky, D. J., “Development by self-digestion: molecular mechanisms and biological functions of autophagy,” Dev. Cell, 6, 463–477 (2004), https://doi.org/10.1016/s1534-5807(04)00099-1.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Q. J., Ding, Y., Kohtz, D. S., et al., “Induction of autophagy in axonal dystrophy and degeneration,” J. Neurosci., 26, 8057–8068 (2006), https://doi.org/10.1523/JNEUROSCI.2261-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Levine, B. and Kroemer, G., “Autophagy in the pathogenesis of disease,” Cell, 132, 27–42 (2008), https://doi.org/10.1016/j.cell.2007.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hou, L., Xiong, N., Liu, L., et al., “Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement,” BMC Neurosci., 16, 82 (2015), https://doi.org/10.1186/s12868-015-0222-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kazemi, H., Noori-Zadeh, A., Darabi, S., et al., “Lithium prevents cell apoptosis through autophagy induction,” Bratisl. Lek. Listy, 119, No. 4, 234–239 (2018), https://doi.org/10.4149/BLL_2018_044.

    Article  CAS  PubMed  Google Scholar 

  36. Gomez-Ramos, A., Abad, X., Fanarraga, M. L., et al., “Expression of an altered form of tau in Sf9 insect cells results in the assembly of polymers resembling Alzheimer’s paired helical filaments,” Brain Res., 1007, 57–64 (2004), https://doi.org/10.1016/j.brainres.2004.01.071.

    Article  CAS  PubMed  Google Scholar 

  37. Sun, X., Sato, S., Murayama, O., et al., “Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100,” Neurosci. Lett., 321, 61–64 (2002), https://doi.org/10.1016/s0304-3940(01)02583-6.

    Article  CAS  PubMed  Google Scholar 

  38. De Ferrari, G. V., Chacon, M. A., Barria, M. I., et al., “Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils,” Mol. Psychiatry, 8, 195–208 (2003), https://doi.org/10.1038/sj.mp.4001208.

    Article  CAS  PubMed  Google Scholar 

  39. Rametti, A., Esclaire, F., Yardin, C., et al., “Lithium down-regulates tau in cultured cortical neurons: A possible mechanism of neuroprotection,” Neurosci. Lett., 434, 93–98 (2008), https://doi.org/10.1016/j.neulet.2008.01.034.

    Article  CAS  PubMed  Google Scholar 

  40. Rametti, A., Esclaire, F., Yardin, C., et al., “Linking alterations in tau phosphorylation and cleavage during neuronal apoptosis,” J. Biol. Chem., 279, 54518–54528 (2004), https://doi.org/10.1074/jbc.M408186200.

    Article  CAS  PubMed  Google Scholar 

  41. Yu, F., Zhang, Y., and Chuang, D. M., “Lithium reduces BACE1 overexpression, beta amyloid accumulation, and spatial learning deficit in mice with traumatic brain injury,” J. Neurotrauma, 29, 2342–2351 (2012), https://doi.org/10.1089/neu.2012.2449.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sofola, O., Kerr, F., Rogers, I., et al., “Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer’s disease,” PLoS Genetics, 6, e1001087 (2010), https://doi.org/10.1371/journal.pgen.1001087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mudher, A., Shepherd, D., Newman, T. A., et al., “GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila,” Mol. Psychiatry, 9, 522–530 (2004), https://doi.org/10.1038/sj.mp.4001483.

    Article  CAS  PubMed  Google Scholar 

  44. Trujillo-Estrada, L., Jimenez, S., De Castro, V., et al., “In vivo modification of Abeta plaque toxicity as a novel neuroprotective lithium-mediated therapy for Alzheimer’s disease pathology,” Acta Neuropathol. Commun., 1, 73 (2013), https://doi.org/10.1186/2051-5960-1-73.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pan, Y., Short, J. L., Newman, S. A., et al., “Cognitive benefits of lithium chloride in APP/PS1 mice are associated with enhanced brain clearance of beta-amyloid,” Brain Behav. Immun., 70, 36 (2018), https://doi.org/10.1016/j.bbi.2018.03.007.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, M., Qian, T., Zhou, W., et al., “Beneficial effects of low-dose lithium on cognitive ability and pathological alteration of Alzheimer’s disease transgenic mice model,” Neuroreport, 31, 943–951 (2020), https://doi.org/10.1097/WNR.0000000000001499.

    Article  CAS  PubMed  Google Scholar 

  47. Pouladi, M. A., Brillaud, E., Xie, Y., et al., “NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease,” Neurobiol. Dis., 48, 282–289 (2012), https://doi.org/10.1016/j.nbd.2012.06.026.

    Article  CAS  PubMed  Google Scholar 

  48. Wilson, E. N., Do Carmo, S., Welikovitch, L. A., et al., “NP03, a microdose lithium formulation, blunts early amyloid post-plaque neuropathology in McGill-R-Thy1-APP Alzheimer-like transgenic rats,” J. Alzheimers Dis., 73, 723–739 (2020), https://doi.org/10.3233/JAD-190862.

    Article  PubMed  Google Scholar 

  49. Nunes, M. A., Schowe, N. M., Monteiro-Silva, K. C., et al., “Chronic microdose lithium treatment prevented memory loss and neurohistopathological changes in a transgenic mouse model of Alzheimer’s disease," PLoS ONE, 10, e0142267 (2015), https://doi.org/10.1371/journal.pone.0142267.

  50. Vasconcelos-Moreno, M. P., Fries, G. R., Gubert, C., et al., “Telomere length, oxidative stress, inflammation and BDNF levels in siblings of patients with bipolar disorder: Implications for accelerated cellular aging,” Int. J. Neuropsychopharmacol., 20, No. 6, 445–454 (2017), https://doi.org/10.1093/ijnp/pyx001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barbé-Tuana, F. M., Parisi, M. M., Panizzutti, B. S., et al., “Shortened telomere length in bipolar disorder: a comparison of the early and late stages of disease,” Braz. J. Psychiatry, 38, No. 4, 281–286 (2016), https://doi.org/10.1590/1516-4446-2016-1910.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang, Y. C., Wang, L. J., Tseng, P. T., et al., “Leukocyte telomere length in patients with bipolar disorder: An updated meta-analysis and subgroup analysis by mood status,” Psychiatry Res., 270, 41–49 (2018), https://doi.org/10.1016/j.psychres.2018.09.035.

    Article  CAS  PubMed  Google Scholar 

  53. Martinsson, L., Wei, Y., Xu, D., et al., “Long term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres,” Transl. Psychiatry, 3, No. 5, e261 (2013), https://doi.org/10.1038/tp.2013.37.

  54. Pisanu, C., Congiu, D., Manchia, M., et al., “Differences in telomere length between patients with bipolar disorder and controls are influenced by lithium treatment,” Pharmacogenomics, 21, No. 8, 533–540 (2020), https://doi.org/10.2217/pgs-2020-0028.

    Article  CAS  PubMed  Google Scholar 

  55. Köse Çinar, R., “Telomere length and hTERT in mania and subsequent remission,” Braz. J. Psychiatry, 40, No. 1, 19–25 (2018), https://doi.org/10.1590/1516-4446-2017-2216.

    Article  PubMed  Google Scholar 

  56. Wei, Y. B., Backlund, L., Wegener, G., et al., “Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium,” Int. J. Europsychopharmacol., 18, No. 7, pyv002 (2015), https://doi.org/10.1093/ijnp/pyv002.

  57. Lundberg, M., Biernacka, J. M., Lavebratt, C., et al., “Expression of telomerase reverse transcriptase positively correlates with duration of lithium treatment in bipolar disorder,” Psychiatry Res., 286, 112865 (2020), https://doi.org/10.1016/j.psychres.2020.112865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Niu, C. and Yip, H. K., “Neuroprotective signaling mechanisms of telomerase are regulated by brain-derived neurotrophic factor in rat spinal cord motor neurons,” J. Neuropathol. Exp. Neurol., 70, No. 7, 634–652 (2011), https://doi.org/10.1097/NEN.0b013e318222b97b.

    Article  CAS  PubMed  Google Scholar 

  59. Terao, T., Nakano, H., Inoue, Y., et al., “Lithium and dementia: A preliminary study,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 30, 1125–1128 (2006), https://doi.org/10.1016/j.pnpbp.2006.04.020.

    Article  CAS  PubMed  Google Scholar 

  60. Nunes, P. V., Forlenza, O. V., and Gattaz, W. F., “Lithium and risk for AD in elderly patients with bipolar disorder,” Br. J. Psychiatry, 190, 359–360 (2007), https://doi.org/10.1192/bjp.bp.106.029868.

    Article  PubMed  Google Scholar 

  61. Hampel, H., Ewers, M., Berger, K., et al., “Lithium trial in Alzheimer’s disease: A randomized, single-blind, placebo-controlled, multicenter 10-week study,” J. Clin. Psychiatry, 70, 922–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Kessing, L. V., Forman, J. L., and Andersen, P. K., “Does lithium protect against dementia?” Bipolar Disord., 12, 87–94 (2010), https://doi.org/10.1111/j.1399-5618.2009.00788.x.

    Article  PubMed  Google Scholar 

  63. Gerhard, T., Devanand, D. P., Huang, C., et al., “Lithium treatment and risk for dementia in adults with bipolar disorder: Populationbased cohort study,” Br. J. Psychiatry, 207, 46–51 (2015), https://doi.org/10.1192/bjp.bp.114.154047.

    Article  PubMed  Google Scholar 

  64. Forlenza, O. V., Radanovic, M., Talib, L. L., et al., “Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: Randomised clinical trial,” Br. J. Psychiatry, 215, 668–674 (2019), https://doi.org/10.1192/bjp.2019.76.

    Article  PubMed  Google Scholar 

  65. Nunes, M. A., Viel, T. A., and Buck, H. S., “Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease,” Curr. Alzheimer Res., 10, 104–107 (2013), https://doi.org/10.2174/1567205011310010014.

    Article  CAS  PubMed  Google Scholar 

  66. Pepelyaev, E. G., Gromova, O. A., Semenov, V. A., and Yanko, E. V., “Interrelation of development of cognitive disturbances with body lithium levels in middle-aged people,” Klin. Nevrol., 1, 30–33 (2019).

    Google Scholar 

  67. Kessing, L. V., Gerds, T. A., Knudsen, N. N., et al., “Association of lithium in drinking water with the incidence of dementia,” JAMA Psychiatry, 74, 1005–1010 (2017), https://doi.org/10.1001/jamapsychiatry.2017.2362.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fajardo, V. A., Fajardo, V. A., LeBlanc, P. J., et al., “Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted AD mortality in Texas,” J. Alzheimers Dis., 61, 425–434 (2018), https://doi.org/10.3233/JAD-170744.

    Article  CAS  PubMed  Google Scholar 

  69. Schrauzer, G. N. and Shrestha, K. P., “Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions,” Biol. Trace Elem. Res., 25, No. 2, 105–113 (1990), https://doi.org/10.1007/BF02990271.

    Article  CAS  PubMed  Google Scholar 

  70. Barjasteh-Askari, F., Davoudi, M., Amini, H., et al., “Relationship between suicide mortality and lithium in drinking water: A systematic review and meta-analysis,” J. Affect. Disord., 264, 234–241 (2020), https://doi.org/10.1016/j.jad.2019.12.027.

    Article  CAS  PubMed  Google Scholar 

  71. Torshin, I. Yu., Sardaryan, I. S., and Gromova, O. A., et al., "Chemoreactome modeling the effects of ascorbate, nicotinate, hydroxybutyrate, comenate, and lithium carbonate,” Farmakokin. Farmakodin., 3, 47–57 (2016).

    Google Scholar 

  72. Pronin, A. V., Gromova, O. A., Torshin, I. Yu. et al., “Preclinical study the pharmacokinetics of lithium ascorbate,” Farmakokin. Farmakodin., 2, 18–25 (2016).

    Google Scholar 

  73. Ostrenko, K. V., Gromova, O. A., Sardaryan, I. S., et al., “Efficacy of lithium ascorbate in a model of chronic alcohol intoxication,” Farmakokin. Farmakodin., 4, 31–41 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gogoleva.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 11, pp. 17–23, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoleva, I.V., Gromova, O.A., Torshin, I.Y. et al. The Neurobiological Role of Lithium Salts. Neurosci Behav Physi 53, 939–945 (2023). https://doi.org/10.1007/s11055-023-01485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01485-7

Keywords

Navigation