Skip to main content
Log in

Characteristics of Genetic Polymorphisms Associated with Neurophysiological Processes and Analysis of Their Frequency Distributions in the Russian Population

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. To analyze polymorphic loci of genes whose products are directly involved in the molecular mechanisms regulating neurophysiological processes. Materials and methods. The cohort of subjects consisted of 128 unrelated males and females living in the European part of Russia. The study evaluated the frequencies of occurrence of 11 single-nucleotide substitutions located in the genes encoding serotonin receptors, ciliary neurotrophic factor, uncoupling protein 2, methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, dipeptidylcarboxypeptidase 1, peroxisome proliferator-activated receptor γ-coactivator, and brain-derived neurotrophic factor. Genotyping of samples was by PCR with fluorescent detection and restriction fragment length polymorphism analysis. Results. The distributions of genotype polymorphisms complied with Hardy–Weinberg equilibrium, with the exception of rs1801133 MTHFR2 = 5.3088, p = 0.0212), where there was a reduced level of heterozygosity. Study data on the distributions of minor alleles did not show statistically significant deviations from data obtained from the European population, though there were deviations with respect to the Asian, African, and Latin American populations. Conclusions. Statistically significant consistency of allele frequencies in the study group with populations from other regions and studies run in them provide grounds for including the single-nucleotide polymorphisms selected here in a list of a limited set of molecular genetic markers, which can supplement the mental health monitoring system and improve the professional training of people in extreme professions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Spies, A. Nasser, B. Ozenne, et al., “Common HTR2A variants and 5-HTTLPR are not associated with human in vivo serotonin 2A receptor levels, Hum. Brain Mapp., 16, XLI, 4518–4528 (2020), https://doi.org/10.1002/hbm.25138.

  2. N. Brondino, M. Rocchetti, L. Fusar-Poli, et al., “Increased CNTF levels in adults with autism spectrum disorders,” World J. Biol. Psychiatry, 20, No. 9, 742–746 (2019), https://doi.org/10.1080/15622975.2018.1481999.

    Article  PubMed  Google Scholar 

  3. S. Ramaswamy and J. H. Kordower, “Gene therapy for Huntington’s disease,” Neurobiol. Dis., 48, No. 2, 243–254 (2012), https://doi.org/10.1016/j.nbd.2011.12.030.

    Article  CAS  PubMed  Google Scholar 

  4. S. F. Kazim and K. Iqbal, “Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer’s disease,” Mol. Neurodegener., 11, No. 1, 50 (2016), https://doi.org/10.1186/s13024-016-0119-y.

  5. V. Heise, E. Zsoldos, S. Suri, et al., “Uncoupling protein 2 haplotype does not affect human brain structure and function in a sample of community-dwelling older adults,” PLoS One, 12, No. 8, 63–68 (2017), https://doi.org/10.1371/journal.pone.0181392.

    Article  CAS  Google Scholar 

  6. M. Donadelli, I. Dando, C. Fiorini, et al., “UCP2, a mitochondrial protein regulated at multiple levels,” Cell. Mol. Life Sci., 71, No. 7, 1171–1190 (2014), https://doi.org/10.1007/s00018-013-1407-0.

    Article  CAS  PubMed  Google Scholar 

  7. S. Cardoso, S. Correia, C. Carvalho, et al., “Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection,” J. Bioenerg. Biomembr., 47, No. 2, 119–131 (2015), https://doi.org/10.1007/s10863-014-9580-x.

    Article  CAS  PubMed  Google Scholar 

  8. L. Wan, Y. Li, Z. Zhang, et al., “Methylenetetrahydrofolate reductase and psychiatric diseases,” Transl. Psychiatry, 8, No. 1, 242 (2018), https://doi.org/10.1038/s41398-018-0276-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Z. Zhang, L. Yu, S. Li, et al., “Association study of polymorphisms in genes relevant to vitamin B12 and folate metabolism with childhood autism spectrum disorder in a Han Chinese population,” Med. Sci. Monit., 19, 370–376 (2018), https://doi.org/10.12659/msm.905567.

  10. T. Saha, M. Chatterjee, D. Verma, et al., “Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 84, No. 1, 1–10 (2018), https://doi.org/10.1016/j.pnpbp.2018.01.016.

    Article  CAS  PubMed  Google Scholar 

  11. J. L. Roffman, D. G. Brohawn, A. Z. Nitenson, et al., “Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia,” Schizophr. Bull., 39, No. 2, 330–338 (2013), https://doi.org/10.1093/schbul/sbr150.

    Article  PubMed  Google Scholar 

  12. D. S. Froese, T. Huemer, P. Suormala, et al., “Mutation update and review of severe methylenetetrahydrofolate reductase deficiency,” Hum. Mutat., 37, No. 5, 427–438 (2016), https://doi.org/10.1002/humu.22970.

    Article  CAS  PubMed  Google Scholar 

  13. S. Dutta, J. Shaw, A. Chatterjee, et al., “Importance of gene variants and co-factors of folate metabolic pathway in the etiology of idiopathic intellectual disability,” Nutr. Neurosci., 14, No. 5, 202–209 (2011), https://doi.org/10.1179/1476830511Y.0000000016.

    Article  CAS  PubMed  Google Scholar 

  14. S. C. Liew and E. D. Gupta, “Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases,” Eur. J. Med. Genet., 58, 1–10 (2015), https://doi.org/10.1016/j.ejmg.2014.10.004.

    Article  PubMed  Google Scholar 

  15. E. Dardiotis, S. Arseniou, M. Sokratous, et al., “Vitamin B12, folate, and homocysteine levels and multiple sclerosis: A meta-analysis,” Mult. Scler. Relat. Disord., 17, 190–197 (2017), https://doi.org/10.1016/j.msard.2017.08.004.

    Article  PubMed  Google Scholar 

  16. F. Coppede, P. Tannorella, I. Pezzini, et al., “Folate, homocysteine, vitamin B12, and polymorphisms of genes participating in one-carbon metabolism in late-onset Alzheimer’s disease patients and healthy controls,” Antioxid. Redox Signal, 17, No. 2, 195–204 (2012), https://doi.org/10.1089/ars.2011.4368.

    Article  CAS  PubMed  Google Scholar 

  17. L. Mandelli and A. Serretti, “Gene environment interaction studies in depression and suicidal behavior: An update,” Neurosci. Biobehav. Rev., 37, No. 10, 2375–2397 (2013), https://doi.org/10.1016/j.neubiorev.2013.07.011.

    Article  PubMed  Google Scholar 

  18. J. F. Lucatelli, A. C. Barros, V. K. Silva, et al., “Genetic influences on Alzheimer’s disease: evidence of interactions between the genes APOE, APOC1 and ACE in a sample population from the South of Brazil,” Neurochem. Res., 36, No. 8, 1533–1539 (2011), https://doi.org/10.1007/s11064-011-0481-7.

    Article  CAS  PubMed  Google Scholar 

  19. A. Johri and A. Chandra, “PGC-1α, mitochondrial dysfunction, and Huntington’s disease,” Free Radic. Biol. Med., 62, 37–46 (2013), https://doi.org/10.1016/j.freeradbiomed.2013.04.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P. A. Geoffroy, B. Etain, and M. Lajnef, “Circadian genes and lithium response in bipolar disorders: associations with PPARGC1A (PGC-1α) and RORA,” Genes Brain Behav., 15, No. 7, 660–668 (2016), https://doi.org/10.1111/gbb.12306.

    Article  CAS  PubMed  Google Scholar 

  21. C. C. Wang and F. W. Lung, “The role of PGC-1 and Apoε4 in insomnia,” Psychiatr. Genet., 22, No. 2, 82–87 (2012), https://doi.org/10.1097/YPG.0b013e32834dc438.

    Article  CAS  PubMed  Google Scholar 

  22. J. Wang, H. R. Song, M. N. Guo, et al., “PGC-1α regulate critical period plasticity via gene environment interaction in the developmental trajectory to schizophrenia,” Biochem. Biophys. Res. Commun., 525, No. 4, 989–996 (2020), https://doi.org/10.1016/j.bbrc.2020.03.030.

    Article  CAS  PubMed  Google Scholar 

  23. Z. G. Kokaeva, T. O. Kochetkova, E. V. Afonchikova, et al., “Studies of brain-derived neurotropic factor (BDNF) gene polymorphism in Moscow residents,” Genetika, 49, No. 12, 1432–1435 (2013), https://doi.org/10.7868/S0016675813120047.

    Article  CAS  PubMed  Google Scholar 

  24. “World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects World Medical Association,” JAMA, 20, 2191–2194 (2013).

  25. National Library of Medicine, National Center for Biotechnology Information (NCBI), https://www.ncbi.nlm.nih.gov/snp/?term=rs.

  26. J. Nishiyama, M. Tochigi, S. Itoh, et al., “No association between the CNTF null mutation and schizophrenia or personality,” Psychiatr. Genet., 16, No. 5, 217–219 (2006), https://doi.org/10.1097/01.ypg.0000242189.05656.9d.

    Article  PubMed  Google Scholar 

  27. L. Wan, Y. Li, Z. Zhang, et al., “Methylenetetrahydrofolate reductase and psychiatric diseases,” Transl. Psychiatry, 8, No. 1, 1–12 (2018), https://doi.org/10.1038/s41398-018-0276-6.

    Article  CAS  Google Scholar 

  28. C. Lavedan, S. Volpi, and M. H. Polymeropoulos, “Effect of a ciliary neurotrophic factor polymorphism on schizophrenia symptom improvement in an iloperidone clinical trial,” Pharmacogenomics, 9, No. 3, 289–301 (2008), https://doi.org/10.2217/14622416.9.3.289.

    Article  CAS  PubMed  Google Scholar 

  29. N. Antypa, R. Calati, and D. Souery, “Variation in the HTR1A and HTR2A genes and social adjustment in depressed patients,” J. Affect. Disord., 150, No. 2, 649–652 (2013), https://doi.org/10.1016/j.jad.2013.02.036.

    Article  CAS  PubMed  Google Scholar 

  30. Y. L. Jian, Y. J. Ming, M. K. Zhou, et al., “Influence of 5-HTR2A genetic polymorphisms on the efficacy of antidepressants in the treatment of major depressive disorder: A meta-analysis,” J. Affect. Disord., 168, 430–438 (2014), https://doi.org/10.1016/j.jad.2014.06.012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Kutelev.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 122, No. 6, Iss. 1, pp. 122–127, June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutelev, G.G., Malyshkin, S.S., Krivoruchko, A.B. et al. Characteristics of Genetic Polymorphisms Associated with Neurophysiological Processes and Analysis of Their Frequency Distributions in the Russian Population. Neurosci Behav Physi 53, 164–169 (2023). https://doi.org/10.1007/s11055-023-01403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01403-x

Keywords

Navigation