Skip to main content

Advertisement

Log in

Use of Optical Probes for Visualizing Intracellular Calcium and Recording Action Potentials in Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

To date, intracellular calcium reporters are the most commonly used optical probes for detecting neuron activity. Synthetic low molecular weight and genetically encoded protein compounds provide an enormous variety of accessible methods for recording signals of different intensity at different levels of studying the nervous system, from detecting activity in synaptic boutons and dendritic spines to recording the activity of the central nervous system in free behavior in vivo. This paper presents a comparative description of methods for optical recording of changes in the intracellular calcium concentration and compares original experimental data obtained by each of the methods described. Advantages and drawbacks are described, and the potential areas of application of each of the commercially available and widely used types of calcium-sensitive reporters are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P. J., Ben-Johny, M., Dick, I. E., et al., “Apocalmodulin itself promotes ion channel opening and Ca(2+) regulation,” Cell, 159, No. 3, 608–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerboom, J., Chen, T. W., Wardill, T. J., et al., “Optimization of a GCaMP calcium indicator for neural activity imaging,” J. Neurosci., 32, No. 40, 13,819–13,840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexopoulou, A. N., Couchman, J. R., and Whiteford, J. R., “The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors,” BMC Cell Biol., 9, 2–2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnett, L. M., Hughes, T. E., and Drobizhev, M., “Deciphering the molecular mechanism responsible for GCaMP6m’s Ca2+-dependent change in fluorescence,” PLoS One, 12, No. 2, e0170934 (2017).

    Google Scholar 

  • Barykina, N. V., Subach, O. M., Doronin, D. A., et al., “A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites,” Sci. Rep., 6, No. 1, 34447 (2016).

  • Blockstein, L., Luk, C. C., Mudraboyina, A. K., et al., “A PVAc-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via Fura-2 AM,” IEEE Photonics J., 4, No. 3, 1004–1012 (2012).

    Article  Google Scholar 

  • Canepari, M., Vogt, K., and Zecevic, D., “Combining voltage and calcium imaging from neuronal dendrites,” Cell. Mol. Neurobiol., 28, No. 8, 1079–1093 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall, W. A., “Structure and regulation of voltage-gated Ca2+ channels,” Annu. Rev. Cell. Dev. Biol., 16, 521–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Chang, A., Abderemane-Ali, F., Hura, G. L., et al., “A calmodulin C-lobe Ca(2+)-dependent switch governs Kv7 channel function,” Neuron, 97, No. 4, 836–852 e6 (2018).

  • Chen, T.-W., Wardill, T. J., Sun, Y., et al., “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature, 499, No. 7458, 295– 300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong, L., Wang, Z., Chai, Y., et al., “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife, 6, e28158 (2017).

  • Dana, H., Sun, Y., Mohar, B., et al., “High-performance calcium sensors for imaging activity in neuronal populations and microcompartments,” Nat. Methods, 16, No. 7, 649–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Dreosti, E., Odermatt, B., Dorostkar, M. M., and Lagnado, L., “A genetically encoded reporter of synaptic activity in vivo,” Nat. Methods, 6, No. 12, 883–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler, C. J. and Tiger, G., “Calibration of Fura-2 signals introduces errors into measurement of thrombin-stimulated calcium mobilisation in human platelets,” Clin. Chim. Acta, 265, No. 2, 247–261 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, R. W. and Korsching, S. I., “Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging,” Neuron, 18, No. 5, 737–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Gleichmann, M. and Mattson, M. P., “Neuronal calcium homeostasis and dysregulation,” Antioxid. Redox. Signal., 14, No. 7, 1261–1273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grewe, B. F., Langer, D., Kasper, H., et al., “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods, 7, No. 5, 399–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Grienberger, C. and Konnerth, A., “Imaging calcium in neurons,” Neuron, 73, No. 5, 862–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz, G., Poenie, M., and Tsien, R. Y., “A new generation of Ca2+ indicators with greatly improved fluorescence properties,” J. Biol. Chem., 260, No. 6, 3440–3450 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Heim, N. and Griesbeck, O., “Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein,” J. Biol. Chem., 279, No. 14, 14,280–14,286 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Higley, M. J. and Sabatini, B. L., “Calcium signaling in dendritic spines,” Cold Spring Harb. Persp. Biol., 4, No. 4, a005686-a005686 (2012).

    Google Scholar 

  • Hovis, K. R., Padmanabhan, K., and Urban, N. N., “A simple method of in vitro electroporation allows visualization, recording, and calcium imaging of local neuronal circuits,” J. Neurosci. Meth., 191, No. 1, 1–10 (2010).

    Article  CAS  Google Scholar 

  • Kemenes, I., Straub, V. A., Nikitin, E. S., et al., “Role of delayed nonsynaptic neuronal plasticity in long-term associative memory,” Curr. Biol., 16, No. 13, 1269–1279 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Koester, H. J. and Johnston, D., “Target cell-dependent normalization of transmitter release at neocortical synapses,” Science, 308, No. 5723, 863–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kumada, T. and Komuro, H., “Completion of neuronal migration regulated by loss of Ca(2+) transients,” Proc. Natl. Acad. Sci. USA, 101, No. 22, 8479–8484 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, K., Sadée, W., and Quillan, J. M., “Rapid measurements of intracellular calcium using a fluorescence plate reader,” Biotechniques, 26, No. 2, 318–22, 324–6 (1999).

  • LoTurco, J., Manent, J.-B., and Sidiqi, F., “New and improved tools for in utero electroporation studies of developing cerebral cortex,” Cereb. Cortex, 19, Suppl. 1, i120–i125 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangialavori, I., Ferreira-Gomes, M., Pignataro, M. F., et al., “Determination of the dissociation constants for Ca2+ and calmodulin from the plasma membrane Ca2+ pump by a lipid probe that senses membrane domain changes,” J. Biol. Chem., 285, No. 1, 123–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Mao, T., O’Connor, D. H., Scheuss, V., et al., “Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators,” PLoS One, 3, No. 3, e1796 (2008).

    Google Scholar 

  • Matlashov, M. E., Bogdanova, Y. A., Ermakova, G. V., et al., “Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology,” Biochim. Biophys. Acta, 1850, No. 11, 2318–2328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews, E. A. and Dietrich, D., “Buffer mobility and the regulation of neuronal calcium domains,” Front. Cell. Neurosci., 9, 48–48 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta, P., Kreeger, L., Wylie, D. C., et al., “Functional access to neuron subclasses in rodent and primate forebrain,” Cell Rep., 26, No. 10, 2818–2832.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai, J., Ohkura, M., and Imoto, K., “A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein,” Nat. Biotechnol, 19, No. 2, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nikiti, E. S., Balaban, P. M., and Kemenes, G., “Nonsynaptic plasticity underlies a compartmentalized increase in synaptic efficacy after classical conditioning,” Curr. Biol., 23, No. 7, 614–619 (2013).

    Article  Google Scholar 

  • Nikitin, E. S., Zakharov, I. S., Samarova, E. I., et al., “Fine tuning of olfactory orientation behaviour by the interaction of oscillatory and single neuronal activity,” Eur. J. Neurosci., 22, No. 11, 2833–2844 (2005).

    Article  PubMed  Google Scholar 

  • Osakada, F., Mori, T., Cetin, A. H., et al., “New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits,” Neuron, 71, No. 4, 617– (2011).

  • Roshchin, M. V., Matlashov, M. E., Ierusalimsky, V. N., et al., “A BK channel-mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing,” Sci. Adv., 4, No. 7, eaat1357 (2018).

  • Ross, W. N., “Understanding calcium waves and sparks in central neurons,” Nat. Rev. Neurosci., 13, No. 3, 157–168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sah, P. and Clements, J. D., “Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in hippocampal pyramidal neurons,” J. Neurosci., 19, No. 10, 3657–3664 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz, N. A., Buetfering, C., Lecoq, J., et al., “Aberrant cortical activity in multiple GCaMP6-expressing transgenic mouse lines,” eNeuro, 4, No. 5) (2017).

  • Storace, D. A., Braubach, O. R., Jin, L., et al., “monitoring brain activity with protein voltage and calcium sensors,” Sci. Rep., 5, No. 1, 10212 (2015).

  • Tervo, D. G., Hwang, B. Y., Viswanathan, S., et al., “A designer AAV variant permits efficient retrograde access to projection neurons,” Neuron, 92, No. 2, 372–382 (2016), https://doi.org/10.1016/j.neuron.2016.09.021 .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, L., Hires, S. A., Mao, T., et al., “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods, 6, No. 12, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Den Pol, A. N., Mocarski, E., Saederup, N., et al., “Cytomegalovirus cell tropism, replication, and gene transfer in brain,” J. Neurosci., 19, No. 24, 10948–10965 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wachowiak, M. and Cohen, L. B., “Representation of odorants by receptor neuron input to the mouse olfactory bulb,” Neuron, 32, No. 4, 723– 735 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. S. and Augustine, G. J., “Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function,” Neuron, 15, No. 4, 755–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Kumada, T., Morishima, T., et al., “Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria,” Cereb. Cortex, 24, No. 4, 1088–1101 (2014).

    Article  PubMed  Google Scholar 

  • Watakabe, A., Ohtsuka, M., Kinoshita, M., et al., “Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex,” Neurosci. Res., 93, 144–157 (2015).

    Article  PubMed  Google Scholar 

  • Wilson, J. M., Dombeck, D. A., Díaz-Ríos, M., et al., “Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse,” J. Neurophysiol., 97, No. 4, 3118–3125 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Liu, N., He, Y., et al., “Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP,” Nat. Commun., 9, No. 1, 1504 (2018).

  • Zheng, K., Bard, L., Reynolds, J. P., et al., “Time-resolved imaging reveals heterogeneous landscapes of nanomolar Ca(2+) in neurons and astroglia,” Neuron, 88, No. 2, 277–288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Nikitin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 72, No. 2, pp. 149–158, March–April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, E.S., Roshchin, M.V., Borodinova, A.A. et al. Use of Optical Probes for Visualizing Intracellular Calcium and Recording Action Potentials in Neurons. Neurosci Behav Physi 52, 1212–1217 (2022). https://doi.org/10.1007/s11055-023-01350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01350-7

Keywords

Navigation