Skip to main content

Advertisement

Log in

Execution of the functions of the nervous system in humans, especially the higher functions of the brain, requires a particular level of stability of the internal environment of the brain. In the resting stage, both the brain and the kidneys are of key importance for homeostasis and take about 20% of the minute volume of blood circulation. Vasopressin has a role in regulating water and ion transport in the kidneys and this same hormone determines different types of behavior. This article pays particular attention to the problem of integrity and its physiological sense. Similar levels of functional organization of the brain and kidneys are identified and we discuss the question of how the integration of molecular and cellular systems generates a new quality – the integrity of the body – is reflected in psychology and creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, D., et al., Molecular Biology of the Cell in Three Volumes, Vol. 3, Regular and Chaotic Dynamics [Russian translation], NITs RKhD, Izhevsk (2013).

    Google Scholar 

  • Anokhin, K. V. and Saidov, Kh. M., “New approaches to cognitive neurobiology: molecular labeling methods and ex vivo visualization of cognitively active neurons,” Zh. Vyssh. Nerv. Deyat., 67, No. 3, 259–272 (2017).

    Google Scholar 

  • Anokhin, P. K., Cybernetics of Functional Systems: Selected Works, Meditsina, Moscow (1998).

    Google Scholar 

  • Balaban, P. M., “Molecular mechanisms of memory modifications,” Zh. Vyssh. Nerv. Deyat., 67, No. 2, 131–140 (2017).

    Google Scholar 

  • Barcroft, J., Features of the Architecture of Physiological Functions [Russian translation], State Biological and Medical Literature Press, Moscow, Leningrad (1937).

    Google Scholar 

  • Berger, J., Portraits [Russian translation], Azbuka, St. Petersburg (2018).

    Google Scholar 

  • Bernard, C., A Course in General Physiology. Vital Signs Common to Animals and Plants [Russian translation], St. Petersburg (1878).

  • Guyton, A. C. and Hall, J., Medical Physiology [Russian translation], Logosfera, Moscow (2008).

    Google Scholar 

  • Golosova, D. V., Karavashkina, T. A., Kutina, A. V., et al., “Effects of selective agonists of V1a, V2, and V1b receptors on sodium transport in the rat kidney,” Bull. Exper. Biol. Med., 160, No. 12, 712–715 (2015).

    Google Scholar 

  • Griffin, J. and Ojeda, S. (eds.), Physiology of the Endocrine System, Binom, Knowledge Laboratory (2008).

  • Kamkin, A. G. and Kamenskii, A. A. (eds.), Basic and Clinical Physiology: Textbook, Academia, Moscow (2004).

    Google Scholar 

  • Mandelstam, O. E., Poems, Soviet Weiter, Leningrad (1979), 2nd ed.

  • Natochin, Yu. V., “Homeostasis,” Usp. Fiziol. Nauk., 48, No. 4, 3–15 (2017).

    Google Scholar 

  • Natochin, Yu. V., Challenges in the Evolutionary Physiology of Water-Salt Balance, Nauka, Leningrad (1984).

    Google Scholar 

  • Natochin, Yu. V. (ed.), Physiology of Water-Salt Balance and Kidneys, Basic Contemporary Physiology series, Nauka, St. Petersburg (1993).

  • Natochin, Yu. V., Golosova, D. V., and Shakhmatova, E. I., “A new functional role for oxytocin – involvement in osmoregulation,” Dokl. Acad. Nauk, 479, No. 6, 712–715 (2018).

    Google Scholar 

  • Nieto Yusta, C., Gustav Klimt: Painter of the Soul [Russian translation], Album, Moscow (2007).

    Google Scholar 

  • Orbeli, L. A., Lectures on the Physiology of the Nervous System, Medgiz, Moscow, Leningrad (1938), 3rd ed.

  • Pavlov, I. P., Selected Works, Meditsina, Moscow (1999).

    Google Scholar 

  • Pokrovskii, V. M. and Korot’ko, G. F. (eds.), Human Physiology: Textbook, Meditsina, Moscow (2011), 3rd ed.

  • Rozanov, A. Yu., “Pseudomorphosis in microbes and meteorites,” in: Challenges in the Origin of Life, Paleontology Institute, Russian Academy of Sciences (2009), pp. 158–165.

  • Sverdlov, E. D., A View of Life Through the Window of the Genome in Three Volumes, Nauka, Moscow (2009), Vol. 1.

  • Harari, Y. N., Sapiens: a Brief History of Humanity [Russian translation], Sindbad, Moscow (2016).

    Google Scholar 

  • Hardy, R., Homeostasis [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  • Shmal’gauzen, I. I., “The organism as a whole in individual and historical development,” in: Selected Works, Nauka, Moscow (1982).

  • Barsegyan, A., Atsak, P., Hornberger, W. B., et al., “The vasopressin 1b receptor antagonist A-988315 blocks stress effects on the Retrieval Of object-recognition memory,” Neuropsychopharmacology, 40, No. 8, 1979–1989 (2015), doi: https://doi.org/10.1038/npp.2015.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon, W. B., “Organization for physiological homeostasis,” Physiol. Rev., 9, 399–431 (1929).

    Article  Google Scholar 

  • Chatelanat, F. “Anatomy of the kidney,” in: Nephrology, Hamburger, J. et al. (eds.), Wiley, New York (1979), pp. 3–40.

  • Dubina, M. V.,. Vyazmin, S. Yu., Boitsov, V. M., et al., “Potassium ions are more effective than sodium Ions in salt induced peptide formation,” Orig. Life Evol. Biospher., 43, 109–117 (2013).

    Article  CAS  Google Scholar 

  • Ebstein, R. P., Knafo, A., Mankuta, D., et al., “The contributions of oxytocin and vasopressin pathway genes to human behavior,” Horm. Behav., 61, No. 3, 359–379 (2012).

    Article  CAS  Google Scholar 

  • Israel, S., Lerer, E., Shalev, I., et al., “Molecular genetic studies of the arginine vasopressin 1a receptor (AVPR1a) and the oxytocin receptor (OXTR) in human behaviour: from autism to altruism with some notes in between,” Prog. Brain Res., 170, 435–49 (2008).

    Article  CAS  Google Scholar 

  • Kaku, M., The Future of the Mind, Doubleday, New York (2014).

    Google Scholar 

  • Kangussu, L. M., Almeida-Santos, A. F., Bader, M., et al., “Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen,” Behav. Brain Res., 257, 25–30 (2013).

    Article  CAS  Google Scholar 

  • Koshimizu, T. A., Nakamura, K., Egashira, N., et al., “Vasopressin V1a and V1b receptors: from molecules to physiological systems,” Physiol. Rev., 92, No. 4, 1813–18

  • Krieg, S. M., Sonanini, S., Plesnila, N., and Trabold, R., “Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice,” J. Neurotrauma, 32, No. 4, 221–227 (2015).

    Article  Google Scholar 

  • Kriz, W., Bankir, L., Bulger, R. E., et al., “A standard nomenclature for structures of the kidney,” Am. J. Physiol. Renal, Fluid and Electrolyte Physiology, 254, No. 23, F1–F8 (1988).

    Google Scholar 

  • Kutina, A. V., Golosova, D. V., Marina, A. S., et al., “Role of vasopressin in the regulation of renal sodium excretion: interaction with glucagon-like peptide-1,” J. Neuroendocrinol. (2016), doi: https://doi.org/10.1111/jne12367.

  • Kutina, A. V., Marina, A. S., Shakhmatova, E. I., and Natochin, Y. V., “Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic,” Clin. Exp. Pharmacol. Physiol., 40, 510–517 (2013).

    Article  CAS  Google Scholar 

  • Natochin, Yu. V., Parnova, R. G., Shakhmatova, E. I., et al., “AVP-independent high osmotic water permeability of frog urinary bladder and autacoids,” Pflügers Arch.-Eur. J. Physiol., 433, 136–145 (1996).

    Article  CAS  Google Scholar 

  • Pagani, J. H., Zhao, M., Cui, Z., et al., “Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2,” Mol. Psychiatry, 20, No. 4, 490–499 (2015).

    Article  CAS  Google Scholar 

  • Song, Z. and Albers, H. E., “Cross-talk among oxytocin and arginine-vasopressin receptors: Relevance for basic and clinical studies of the brain and periphery,” Front. Neuroendocrinol. (2017), pii: S0091-3022(17)30064-X.

  • Verbalis, J. G., Mangione, M. P. Stricker, E., “M Oxytocin produces natriuresis in rats at physiological plasma concentrations,” Endocrinology, 128, No. 3, 1317–1322 (1991).

    Article  CAS  Google Scholar 

  • Von Bohlen und Halbach O., “The renin-angiotensin system in the mammalian central nervous system,” Curr. Protein Pept. Sci., 6, No. 4, 355–371 (2005).

    Article  Google Scholar 

  • Wacker, D. W. and Ludwig, M., “Vasopressin, oxytocin social odor recognition,” Horm. Behav., 61, No. 3, 259–265 (2012).

    Article  CAS  Google Scholar 

  • Wright, J. W. and Harding, J. W., “The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases,” Pflügers Arch., 465, No. 1, 133 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Natochin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 68, No. 6, pp. 775–787, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natochin, Y.V. Integrity. Neurosci Behav Physi 50, 92–101 (2020). https://doi.org/10.1007/s11055-019-00873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00873-2

Keywords

Navigation