Skip to main content
Log in

Effects of Cold Shock on Responses of Phosphomonoesters and Free Amino Acids in Phospholipid-Rich Organs in the Amur Sleeper Perccottus Glehni

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Similarities and differences were found in the mechanisms of adaptation of the brain and liver to cold shock in the freshwater fish Perccottus glehni. The quantity of phosphoethanolamine in the brain on day 4 of cold shock at +4°C increased 84-fold from the level in controls (+20°C), accounting for 22.3% of the total pool of free amino acids and ninhydrin-positive compounds. Phosphoserine was absent from the brain at +20°C, but cold shock initiated its accumulation to 1.8% of the total pool. The taurine pool at +4°C decreased from 28.3 to 20% of the total pool, yielding first place to phosphoethanolamine. However, in the liver, phosphoethanolamine (PE) and phosphoserine (PS) were not seen in the free form either in controls or at 4°C. The dominant amino acid in the liver at both temperatures was taurine, the quantity at +4°C being significantly increased. Th glutamate pool decreased nine-fold at +4°C. It is suggested that the intense accumulation of PE and PS in the brain at low temperatures is evidence of the specific features of the adaptation of the neuron membrane, reflecting quantitative changes in phospholipids, possibly including sphingosine-1-phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Karanova, “Free amino acid levels in the blood and muscles of the Amur sleeper Perccottus glehni during preparation and completion of hibernation,” Zh. Evolyuts. Biokhim. Fiziol., 45, No. 1, 59–67 (2009).

    CAS  Google Scholar 

  2. M. V. Karanova, “The effects of acute cold shock on free amino acid pools in the pond fish the Amur sleeper Perccottus glehni (Eleotridae, Perciformes),” Izv. Ross. Akad. Nauk. Ser. Biol., 2, 153–162 (2011).

    Google Scholar 

  3. M. V. Karanova, “Identification of phosphoethanolamine and phosphoserine in the brain of the eurythermic pond fish Perccottus glehni (Eleotridae, Perciformes, Dyb, 1877),” Ros. Fiziol. Zh., 101, No. 4, 400–407 (2015).

    CAS  Google Scholar 

  4. M. V. Karanova and A. A. Andreev, “Free amino acids and reducing sugars in the amphipod Gammarus lacustris (Crustacea, Amphipoda) at the beginning of the stage of preparation for the winter season,” Zh. Evolyuts. Biokhim. Fiziol., 46, No. 4, 279–283 (2010).

    CAS  Google Scholar 

  5. M. V. Karanova and E. N. Gakhova, “Biochemical strategy for survival in the freshwater mollusk Lymnaea stagnalis at near-zero temperatures,” Zh. Evolyuts. Biokhim. Fiziol., 43, No. 3, 258–264 (2007).

    CAS  Google Scholar 

  6. M. V. Karanova and N. A. Ivlicheva, “The phosphoethanolamine and phosphoserine pools in the brain of the mollusk Lymnaea stagnalis in the summer period and before the onset of winter hibernation,” Zh. Evolyuts. Biokhim. Fiziol., 52, No. 2, 113–117 (2016).

    Google Scholar 

  7. I. K. Kolomiitseva, “Lipids in the hibernation and artificial hypobiosis of mammals,” Biokhimiya, 76, No. 12, 1604–1614 (2011).

    Google Scholar 

  8. I. K. Kolomiitseva, L. N. Markevich, D. A. Ignat’ev, and O. V. By k ova, “Lipids of the nuclear fraction of neocortical neurons and glia in artificial hypobiosis in rats,” Biokhimiya, 75, No. 9, 1265–1272 (2010).

    Google Scholar 

  9. F. Bourquin, H. Riezman, G. Capitani, and M. Grütter, “Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphi ngolipid metabolism,” Structure, 18, No. 8, 1054–1065 (2010).

    Article  PubMed  CAS  Google Scholar 

  10. M. J. C. Chang and B. I. Roots, “The effect of temperature- and oxygen-acclimation on phospholipids of goldfish (Carassius auratus) brain mitochondria,” Neurochem. Res., 10, No. 9, 1231–1246 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. T. A. Churchill and K. B. Story, “Responses to freezing exposure of hatchling turtles Trachemys scripta elegans: factors influencing the development of freeze tolerance by reptiles,” J. Exp. Biol., 167, 221–233 (1992).

    PubMed  CAS  Google Scholar 

  12. M. R. Donaldson, S. J. Cooke, J. D. A. Patterson, and J. S. Mac donald, “Cold shock and fish,” J. Fish Biol., 73, 1491–1530 (2008).

    Article  Google Scholar 

  13. D. W. Ellison, M. F. Beal, and J. B. Martin, “Phosphoethanolamine and ethanolamine are decreased in Alzheimer’s disease and Huntington’s disease,” Brain Res., 417, No. 2, 389–392 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. J. Gras, Y. Gudefin, F. Chagny, and H. Perrier, “Free amino acids and ninhydrin-positive substances in fish-II. Cardio-respiratory system: Plasma, erythrocytes, heart and gills of the rainbow trout (Salmo gaitdnerii Richardson),” Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 73, No. 4, 845–847 (1982).

    Article  CAS  Google Scholar 

  15. K. Itagaki, J. Yun, J. Hengst, et al., “Sphingosine-1-phosphate has dual functions in the regulation of endothelial cell permeability and Ca2+ metabolism,” J. Pharmacol. Exp. Ther., 323, No. 1, 186–191 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. M. Karanova, “Influence of low temperature on the evolution of amino acids pools adaptive modifications in poikilothermic animals (review),” Int. J. Biochem., Biophys., 1, No. 2, 33–40 (2013).

    Google Scholar 

  17. M. Karanova, “Identification of phosphoethanolamine and phosphoserine in the brain of the pond fish Perccottus glehni (Eleotridae, Perciformes, Dyb. 1877),” Neurosci. Behav. Physiol., 46, No. 7, 803–807 (2016), doi: https://doi.org/10.1007/s11055-016-0314-x.

    Article  CAS  Google Scholar 

  18. H. Kataoka, K. Nakai, Y. Katagiri, and M. Makita, “Analysis of free and bound O-phosphoamino acids in urine by gas chromatography with flame photometric detection,” Biomed. Chromatogr., 7, No. 4, 184–188 (1993), doi: https://doi.org/10.1002/bmc.1130070403. PMID 7693088.

  19. W. E. Klunk, R. J. McClure, and J. W. Pettergrew, “L-phosphoserine, a metabolite elevated in Alzheimer’s disease, interacts with specific L-glutamate receptor subtypes,” J. Neurochem., 56, No. 6, 1997–2003 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. A. Lajtha and H. Sershen, “Changes in the rates of proteins synthesis in the brain of goldfish at various temperatures,” Life Sci., 17, 1816–1868 (1975).

    Article  Google Scholar 

  21. E. A. Mortinova, “Roles of sphingosine-1-phosphate in cell growth, differentiation and death,” J. Biochem., 63, 105–113 (1998).

    Google Scholar 

  22. B. S. Meldrum, “Glutamate as a neurotransmitter in the brain: Review of physiology and pathology,” J. Nutrition, 130, Suppl. 4S, 1007S–1015S (2000).

    Article  CAS  Google Scholar 

  23. V. I. Morozov, G. A. Sakuta, and M. I. Kalinski, “Sphingosine-1- phosphate: distribution, metabolism and role in the regulation of cellular functions,” Ukr. Biokhim. Zh., 85, No. 1, 5–21 (2013).

    CAS  Google Scholar 

  24. J. R. Sargent, J. G. Bell, M. V. Bell, et al., “The metabolism of phospholipids and polyunsaturated fatty acids in fish,” in: Aquaculture: Fundamental and Applied Research. Coastal and Estuarine Studies, B. Lalou and P. Vitiello (eds.), American Geophysical Union, Washington (1993), Vol. 43, No. 7, pp. 124–193.

  25. D. H. Spachman, W. H. Stein, and S. Moore, “Automatic recording apparatus for use in the chromatography of amino acids,” Anal. Chem., 30, No. 7, 1190–1206 (1958).

    Article  Google Scholar 

  26. L. Tabatabaie, L. W. Klomp, R. Berger, and T. J. de Koning, “L-serine synthesis in the central nervous system: a review on serine deficiency disorders,” Mol. Genet. Metab., 99, No. 3, 256–262 (2010).

    Article  PubMed  CAS  Google Scholar 

  27. D. R. Tocher, “Glycerophospholipid metabolism,” in: Biochemistry and Molecular Biology of Fishes, P. W. Hochachka and T. P. Mommsen (eds.), Elsevier Science (1995), Vol. 4, pp. 119–157.

  28. J. E. Vance, “Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids,” J. Lipid Res., 49, 1377–1387 (2008).

    Article  PubMed  CAS  Google Scholar 

  29. J. E. Vance and G. Tasseva, “Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells,” Biochim. Biophys. Acta, 1831, 543–554 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Karanova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 1, pp. 89–97, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanova, M.V. Effects of Cold Shock on Responses of Phosphomonoesters and Free Amino Acids in Phospholipid-Rich Organs in the Amur Sleeper Perccottus Glehni. Neurosci Behav Physi 48, 528–533 (2018). https://doi.org/10.1007/s11055-018-0595-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0595-3

Keywords

Navigation