Skip to main content
Log in

Changes in the Beta Rhythm on Acquisition of a Set to an Emotional Facial Expression with Lengthening of the Time Interval Between the Warning and Trigger Stimuli

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies on 35 healthy subjects using wavelet transformation addressed changes in the parameters of the beta rhythm on acquisition of a set to a facial expression in conditions of loading on working memory in the form of an increase in the interval between the warning and trigger stimuli to 8 sec. Beta-rhythm power was analyzed in terms of the mean level and the peak coefficient of wavelet transformation. Numbers of recognition errors were used to divide the subjects into three groups: from 1 to 5 and from 5 to 30 errors, and a group of subjects with error-free recognition of facial expression. The group with error-free recognition was characterized by high values for the mean coefficient of the beta-rhythm wavelet transformation throughout the experiment, high peak values for the coefficient of beta-rhythm wavelet transformation during the first one-second interstimulus interval, the longest peak latent periods at the formation stage, and a predominance of peaks in the coefficient of the beta-rhythm wavelet transformation in the left hemisphere as compared with the right. Subjects with erroneous recognition had a lower mean coefficient of wavelet transformation, lower wavelet transformation coefficient, and lower latent periods at the set formation stage. In terms of peaks of the wavelet transformation coefficient, subjects of these two groups were dominated by the right hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Kostandov, N. S. Kurova, E. A. Cheremushkin, and I. A. Yakovenko, “The role of working memory in the formation of a visual set,” Zh. Vyssh. Nerv. Deyat., 52, No. 2, 149–155 (2002).

    CAS  Google Scholar 

  2. E. A. Kostandov, N. S. Kurova, E. A. Cheremushkin, and I. A. Yakovenko, “Relationship between a set and the involvement of the ventral and dorsal visual systems in cognitive activity,” Zh. Vyssh. Nerv. Deyat., 55, No. 2, 170–177 (2005).

    CAS  Google Scholar 

  3. E. A. Kostandov, N. S. Kurova, E. A. Cheremushkin, et al., “Spatial synchronization of EEG rhythms in the theta and alpha ranges in an unconscious set to the perception of an emotional facial expression,” Zh. Vyssh. Nerv. Deyat., 58, No. 6, 678–687 (2008).

    CAS  Google Scholar 

  4. E. A. Kostandov, E. A. Cheremushkin, M. L. Ashkinazi, and I. A. Yakovenko, “Changes in evoked cortical electrical activity at different time periods between warning and target stimuli,” Zh. Vyssh. Nerv. Deyat., 61, No. 6, 675–687 (2011).

    CAS  Google Scholar 

  5. I. A. Yakovenko, M. K. Kozlov, and E. A. Cheremushkin, “Changes in the evoked beta rhythm in the cerebral cortical hemispheres on formation of a set to an emotional facial expression in conditions of loading on working memory,” Zh. Vyssh. Nerv. Deyat., 62, No. 3, 302–310 (2012).

    Google Scholar 

  6. I. A. Yakovenko, E. A. Cheremushkin, and M. K. Kozlov, “Analysis of evoked electrical activity of the cerebral cortex by wavelet transformation a different stages of a set to an emotional facial expression,” Zh. Vyssh. Nerv. Deyat., 60, No. 4, 409–418 (2010).

    Google Scholar 

  7. K. Benchenane, P. H. Tiesinga, and F. H. Battaglia, “Oscillations in the prefrontal cortex: a gateway to memory and attention,” Curr. Opin. Neurobiol., 21, 1–11 (2011).

    Article  Google Scholar 

  8. V. J. Bourne, “Lateralised processing of positive facial emotion: sex differences in strength of hemispheric dominance,” Neuropsychology, 43, 953–956 (2005).

    Article  Google Scholar 

  9. E. Duzel, A. Richardson-Klavehn, M. Neufang, et al., “Early, partly anticipatory, neural oscillations during identification set the stage for priming,” Neuroimage, 25, No. 3, 690–700 (2005).

    Article  PubMed  Google Scholar 

  10. P. Ekman and W. V. Friesen, Pictures of Facial Affect, Consultants Psychological Press, Palo Alto (CA) (1976).

    Google Scholar 

  11. A. Engel and P. Fries, “Beta-band oscillations – signalling the status quo?” Curr. Opin. Neurobiol., 20, 156–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. A. V. Harrell and A. M. Allan, “Improvements in hippocampal-dependent learning and decremental attention in 5-HT(3) receptor overexpressing mice,” Learn. Mem., 10, 410–419 (2003).

    Article  PubMed Central  PubMed  Google Scholar 

  13. W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res. Rev., 29, 169–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. W. Klimesch, R. Freunberger, and P. Sauseng, “Oscillatory mechanisms of process binding in memory,” Neurosci. Biobehav. Rev., 34, 1002–1014 (2010).

    Article  PubMed  Google Scholar 

  15. J. Kropotov, Quantitative EEG Event-Related Potentials and Neurotherapy, Academic Press, San Diego (2009).

    Google Scholar 

  16. R. R. Llinas, A. A. Grace, and Y. Yarom, “In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10 to 50-Hz frequency range,” Proc. Natl. Acad. Sci. USA, 88, No. 3, 897–901 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. M. V. Marrufo, E. Vaquero, M. J. Cardoso, and C. C. Gomes, “Temporal evolution of alpha and beta bands during visual spatial attention,” Cogn. Brain Res., 12, 315–320 (2001).

    Article  Google Scholar 

  18. P. Sauseng, B. Griesmayr, R. Freunberger, and W. Klimesch, “Control mechanisms in working memory: A possible function of EEG theta oscillations,” Neurosci. Biobehav. Rev., 34, 1015–1022 (2010).

    Article  PubMed  Google Scholar 

  19. A. Schnitzler and J. Gross, “Normal and pathological oscillatory communication in the brain,” Nat. Rev. Neurosci., 6, 285–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. M. Steriade, “Grouping of brain rhythms in corticothalamic systems,” Neuroscience, 137, 1087–1106 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. C. Tallon-Baudry, S. Mandon, W. A. Freiwald, and A. K. Kreiter, “Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task,” Cereb. Cortex, 14, 713–720 (2004).

    Article  PubMed  Google Scholar 

  22. P. J. Uhlhaas, C. Haenschel, D. Nikolic, and W. Singer, “The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia,” Schizophr. Bull., 34, No. 5, 927–943 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  23. M. A. Whittington, R. D. Traub, H. J. Faulkner, et al., “Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations,” Proc. Natl. Acad. Sci. USA, 94, 12,198–12,203 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Yakovenko.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 63, No. 4, p. 460–469, July–August, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, I.A., Cheremushkin, E.A. & Kozlov, M.K. Changes in the Beta Rhythm on Acquisition of a Set to an Emotional Facial Expression with Lengthening of the Time Interval Between the Warning and Trigger Stimuli. Neurosci Behav Physi 44, 1031–1038 (2014). https://doi.org/10.1007/s11055-014-0020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-0020-5

Keywords

Navigation