Skip to main content
Log in

Modification of the effects of glutamate by nitric oxide (NO) in a pattern-generating network

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Previous studies have shown that nitric oxide (NO) transforms the responses of various neurons to glutamate, though it remained unclear whether this mechanism is involved in the formation of behavior. We therefore studied the buccal generator of the feeding rhythm of the mollusk Lymnaea stagnalis (pond snail). In this organism, glutamate and NO are synthesized by defined neurons; glutamate is the neurotransmitter for the second phase of the standard triphasic feeding rhythm. Motoneuron B4 was used for monitoring. Studies using isolated CNS preparations showed that in some cases glutamate evoked hyperpolarization of B4 and terminated rhythmic network activity (n = 17; group 1), while in other cases glutamate evoked depolarization of B4 and activation of a non-standard biphasic rhythm (n = 12; group 2). In group 1, the NO donor nitroprusside lifted the inhibitory effect of glutamate (n = 13), with transformation into an excitatory effect in nine cases. In group 2, the NO acceptor PTIO transformed the excitatory effect of glutamate into an inhibitory effect (n = 7). These results provide evidence that: 1) the responses of the central generator of the buccal motor rhythm to glutamate depend on the NO level, and 2) this regulatory mechanism can modify feeding behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. L. D’yakonova, “Neurochemical mechanisms of regulation of train activity in isolated endogenous cochlear oscillators: the role of monoamines and opioid peptides,” Neirofiziologiya, 23, No. 4, 472–480 (1991).

    CAS  Google Scholar 

  2. T. L. D’yakonova, “NO-producing compounds transform the responses of neurons to glutamate,” Ros. Fiziol. Zh. im. I. M. Sechenova, 84, No. 10, 1152–1160 (1998).

    CAS  Google Scholar 

  3. T. L. D’yakonova, “NO-dependent regulation of the activity of the serotoninergic system of the common snail by glutamate,” Zh. Évolyuts. Biokhim. Fiziol., 38, No. 2, 156–162 (2002).

    Google Scholar 

  4. D. A. Sakharov, “The multiplicity of neurotransmitters: functional significance,” Zh. Évolyuts. Biokhim. Fiziol., 26, No. 5, 733–741 (1990).

    CAS  Google Scholar 

  5. M. J. Brierley, M. S. Yeoman, and P. R. Benjamin, “Glutamate is the transmitter for N2v retraction phase interneurons of the Lymnaea feeding system,” J. Neurophysiol., 78, 3408–3414 (1997).

    PubMed  CAS  Google Scholar 

  6. T. L. Dyakonova, A. S. Vehovszky, and K. Rozsa, “Helix neurons involved in rhythmic movement of the pneumostome,” Neurophysiology (Kiev), 20, No. 4, 509–517 (1988).

    Google Scholar 

  7. C. J. Elliott and A. J. Susswein, “Comparative neuroethology of feeding control in molluscs,” J. Exptl. Biol., 205, 877–896 (2002).

    CAS  Google Scholar 

  8. M. R. Elphick, G. Kemenes, K. Staras, and M. O’Shea, “Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc,” J. Neurosci., 15, No. 11, 7653–7664 (1995).

    PubMed  CAS  Google Scholar 

  9. R. E. Flamm and R. M. Harris-Warrick, “Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit,” J. Neurophysiol., 55, No. 5, 866–881 (1996).

    Google Scholar 

  10. Ji-Ho Park, V. A. Straub, and M. O’Shea, “Anterograde signaling by nitric oxide: characterization and in vitro reconstitution of an identified nitrergic synapse,” J. Neurosci., 18, No. 14, 5463–5476 (1998).

    PubMed  CAS  Google Scholar 

  11. B. R. Johnson and R. M. Harris-Warrick, “Amine modulation of glutamate responses from pyloric motor neurons in lobster stomatogastric ganglion,” J. Neurophysiol., 78, No. 6, 3210–3221 (1997).

    PubMed  CAS  Google Scholar 

  12. M. S. Hedrick and R. D. Morales, “Nitric oxide as a modulator of central respiratory rhythm in the isolated brainstem of the bullfrog (Rana catesbeiana),” Comp. Biochem. Physiol., A124, No. 3, 243–251 (1999).

    Google Scholar 

  13. S. Kobayashi, H. Ogawa, Y. Fujito, and E. Ito, “Nitric oxide suppresses fictive feeding response in Lymnaea stagnalis,” Neurosci. Lett., 285, No. 3, 209–212 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. S. A. Korneev, J. H. Park, and M. O’Shea, “Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene,” J. Neurosci., 19, No. 18, 7711–7720 (1999).

    PubMed  CAS  Google Scholar 

  15. S. A. Korneev, M. R. Piper, J. Picot, R. Phillips, E. I. Korneeva, and M. O’Shea, “Molecular characterization of NOS in a mollusc: expression in a giant modulatory neuron,” J. Neurobiol., 35, 65–71 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. A. Mahadevan, J. Lappe, R. T. Rhyne, N. D. Cruz-Bermudez, E. Marder, and M. F. Goy, “Nitric oxide inhibits the rate and strength of cardiac contractions in the lobster Homarus americanus by acting on the cardiac ganglion,” J. Neurosci., 17, No. 11, 2813–2824 (2004).

    Article  Google Scholar 

  17. L. L. Moroz, Ji-Ho Park, and W. Winlow, “Nitric oxide activates buccal motor patterns in Lymnaea stagnalis,” Neuroreport, 4, No. 6, 643–646 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. L. L. Moroz, T. P. Norekian, T. J. Pirtle, K. J. Robertson, and R. A. Satterlie, “Distribution of NADPH-diaphorase reactivity and effects of nitric oxide on feeding and locomotory circuitry in the pteropod mollusc Clione limacina,” J. Comp. Neurol., 427, No. 2, 274–284 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. O. Pierrefiche, F. Maniak, and N. Larnicol, “Rhythmic activity from transverse brainstem slice of neonatal rat is modulated by nitric oxide,” Neuropharmacology, 43, No. 1, 85–94 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. H. Sadamoto, D. Hatakeyama, S. Kojima, S. Fujito, and E. Ito, “Histochemical study on the relation between NO-generative neurons and central circuitry for feeding in the pond snail, Lymnaea stagnalis,” Neurosci. Res., 32, 57–63 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. N. L. Scholz, J. de Vente, J. W. Truman, and K. Graubard, “Neural network partitioning by NO and cGMP,” J. Neurosci., 21, No. 5, 1610–1618 (2001).

    PubMed  CAS  Google Scholar 

  22. K. Staras, G. Kemenes, and P. R. Benjamin, “Pattern-generating role for motoneurons in a rhythmically active neuronal network,” J. Neurosci., 18, No. 10, 3669–3688 (1998).

    PubMed  CAS  Google Scholar 

  23. W. Stein, C. C. Eberle, and U. B. Hedrich, “Motor pattern selection by nitric oxide in the stomatogastric nervous system of the crab,” Eur. J. Neurosci., 21, No. 10, 2767–2781 (2005).

    Article  PubMed  Google Scholar 

  24. V. A. Straub and P. R. Benjamin, “Extrinsic modulation and motor pattern generation in a feeding network: a cellular study,” J. Neurosci., 21, No. 5, 1767–1778 (2001).

    PubMed  CAS  Google Scholar 

  25. T. Stühmer, A. Muriel, R. J. Harvey, I. Bermudez, I. van Minnen, and M. G. Darlison, “Structure and pharmacological properties of a molluscan glutamate-gated cation channel and its likely role in feeding behavior,” J. Neurosci., 16, No. 9, 2869–2880 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 93, No. 3, pp. 236–247, March, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’yakonova, T.L., D’yakonova, V.E. Modification of the effects of glutamate by nitric oxide (NO) in a pattern-generating network. Neurosci Behav Physi 38, 407–413 (2008). https://doi.org/10.1007/s11055-008-0058-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-0058-3

Key words

Navigation