Skip to main content

Advertisement

Log in

Three-Dimensional Mineral Prospectivity Modeling with Geometric Restoration: Application to the Jinchuan Ni–Cu–(PGE) Sulfide Deposit, Northwestern China

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Structural deformation is ubiquitous throughout geological history. For a mineral deposit that underwent structural deformation after its formation, its geological architecture may have been severely distorted from its original geometry. Due to lack of concern for this fact, the effectiveness of existing mineral prospectivity methods could be limited in areas that experienced structural deformation. This paper proposes a three-dimensional (3D) mineral prospectivity modeling method with geometric restoration. An energy-based geometric restoration approach is presented to restore the existing geometry of geological architecture to the original one according to a series of prior constraints. To represent the original ore-forming environment, the original mineralization distribution and the predictor variables are estimated from the restored 3D geological models. Then, Random Forest is applied to build the mineral prospectivity model that associates predictor variables with the original mineralization distribution. The proposed method was applied to the world-class Jinchuan Ni–Cu–(PGE) sulfide deposit, which underwent significant off-fault deformation after its formation. It was found that, by restoration of the geometry of geological objects and the mineralization distribution, the predictor variables are more reasonable and significant to indicate spatial associations to the mineralization at Jinchuan. This led to a more accurate prospectivity model with superior evaluation metrics (AUCs, F1 scores, kappa coefficients, and PR curves, etc.) compared with the prospectivity model built without geometric restoration. Therefore, 3D mineral prospectivity modeling with geometric restoration is probably much more effective and reliable in quantifying spatial associations with mineralization and in targeting subsurface orebodies in areas that underwent structural deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

Data Availability

The datasets generated during the current study are not publicly available due to a confidentiality agreement.

References

  • Alexander, R. C. (1998). On the emplacement of tabular granites. Journal of the Geological Society, 155(5), 853–862.

    Article  Google Scholar 

  • Barker, S. R., Sherrod, D. R., Lisowski, M., Heliker, C., & Nakata, J. (2003). Correlation between lava-pond drain-back, seismicity, and ground deformation at Pu’u O’o. U.S. Geological Survey Professional Paper, 1676, 53–62.

    Google Scholar 

  • Balestra, M., Corrado, S., Aldega, L., Rudkiewicz, J. L., Morticelli, M. G., Sulli, A., & Sassi, W. (2019). 3D structural modeling and restoration of the Apennine-Maghrebian chain in Sicily: Application for non-cylindrical fold-and-thrust belts. Tectonophysics, 761, 86–107.

    Article  Google Scholar 

  • Barnes, S. J., & Lightfoot, P. C. (2005). Formation of magmatic nickel sulfide deposits and processes affecting their copper and platinum group element contents.

  • Barnes, S. J., Cruden, A. R., Arndt, N., & Saumur, B. M. (2016). The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits. Ore Geology Reviews, 76, 296–316.

    Article  Google Scholar 

  • Barnes, S. J., Holwell, D. A., & Le Vaillant, M. (2017). Magmatic sulfide ore deposits. Elements, 13(2), 89–95.

    Article  Google Scholar 

  • Bense, V., Gleeson, T., Loveless, S., Bour, O., & Scibek, J. (2013). Fault zone hydrogeology. Earth-Science Reviews, 127, 171–192.

    Article  Google Scholar 

  • Bense, V., & Person, M. (2006). Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources Research, 42(5), 1.

    Article  Google Scholar 

  • Blanks, D. E., Holwell, D. A., Barnes, S. J., Schoneveld, L. E., Fiorentini, M. L., Baublys, K. A., Mbiri, L., & Knott, T. R. (2022). Mobilization and fractionation of magmatic sulfide: Emplacement and deformation of the Munali Ni-(Cu-platinum group element) deposit, Zambia. Economic Geology, 117(8), 1709–1729.

    Article  Google Scholar 

  • Botsch, M., Pauly, M., Wicke, M., & Gross, M. (2007). Adaptive space deformations based on rigid cells. Paper presented at the Computer Graphics Forum.

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Calcagno, P., Chilès, J.-P., Courrioux, G., & Guillen, A. (2008). Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1–4), 147–157.

    Article  Google Scholar 

  • Carranza, E. J. M. (2009). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35(3–4), 383–400.

    Article  Google Scholar 

  • Caumon, G., Collon-Drouaillet, P. L. C. D., Carlier, Le., de Veslud, C., Viseur, S., & Sausse, J. (2009). Surface-based 3D modeling of geological structures. Mathematical geosciences, 41(8), 927–945.

    Article  Google Scholar 

  • Chai, G., & Naldrett, A. J. (1992). Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, northwest China. Economic Geology, 87(6), 1475–1495.

    Article  Google Scholar 

  • Chen, J., Mao, X., Liu, Z., & Deng, H. (2020). Three-dimensional metallogenic prediction based on random forest classification algorithm for the Dayingezhuang gold deposit. Geotectonica Et Metallogenia, 44(2), 231–241.

    Google Scholar 

  • Chen, L.-M., Song, X.-Y., Keays, R. R., Tian, Y.-L., Wang, Y.-S., Deng, Y.-F., et al. (2013). Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the western Jinchuan intrusion, northwestern China: Insights from platinum group element geochemistry. Economic Geology, 108(8), 1793–1811.

    Article  Google Scholar 

  • Chamberlin, R. T. (1910). The Appalachian folds of central Pennsylvania. The Journal of Geology, 18(3), 228–251.

    Article  Google Scholar 

  • Clark, M. D., & Riller, U. (2018). 3-D kinematic restoration of the eastern Sudbury Igneous Complex, Canada, and its importance for Cu-Ni-PGE sulphide exploration. Ore Geology Reviews, 101, 199–210.

    Article  Google Scholar 

  • Guzofski, C. A., Mueller, J. P., Shaw, J. H., Muron, P., Medwedeff, D. A., Bilotti, F., & Rivero, C. (2009). Insights into the mechanisms of fault-related folding provided by volumetric structural restorations using spatially varying mechanical constraints. AAPG Bulletin, 93(4), 479–502.

    Article  Google Scholar 

  • Cowan, E.J., Beatson, R.K., Fright, W.R., McLennan, T.J., Mitchell, T.J. (2002). Rapid geological modelling. In Applied Structural Geology for Mineral Exploration and Mining, International Symposium (pp. 23–25).

  • Cressie, N., & Hawkins, D. M. (1980). Robust estimation of the variogram: I. Journal of the international Association for Mathematical Geology, 12(2), 115–125.

    Article  Google Scholar 

  • Dahlstrom, C. D. A. (1969). Balanced cross sections. Canadian Journal of Earth Sciences, 6(4), 743–757.

    Article  Google Scholar 

  • De Santi, M. R., Campos, J. L. E., & Martha, L. F. (2002). A finite element approach for geological section reconstruction. Paper presented at the Proceedings of the 22th Gocad Meeting, Nancy, France.

  • De Waal, S. A., Xu, Z., Li, C., & Mouri, H. (2004). Emplacement of viscous mushes in the Jinchuan ultramafic intrusion, western China. The Canadian Mineralogist, 42(2), 371–392.

    Article  Google Scholar 

  • Deng, H., Zheng, Y., Chen, J., Yu, S., Xiao, K., & Mao, X. (2022a). Learning 3D mineral prospectivity from 3D geological models using convolutional neural networks: Application to a structure-controlled hydrothermal gold deposit. Computers & Geosciences, 161, 105074.

    Article  Google Scholar 

  • Deng, H., Huang, X., Mao, X., Yu, S., Chen, J., Liu, Z., & Zou, Y. (2022b). Generalized mathematical morphological method for 3D shape analysis of geological boundaries: application in identifying mineralization-associated shape features. Natural Resources Research, 31, 2103–2127.

    Article  Google Scholar 

  • Deng, J., Yang, L. Q., Li, R. H., Groves, D. I., Santosh, M., Wang, Z. L., et al. (2019). Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China. Geological Journal, 54(1), 378–391.

    Article  Google Scholar 

  • Ding, X., Ripley, E. M., & Li, C. S. (2012). PGE geochemistry of the Eagle Ni-Cu-(PGE) deposit, Upper Michigan: Constraints on ore genesis in a dynamic magma conduit. Mineralium Deposita, 47, 89–104.

    Article  Google Scholar 

  • Duan, J., Li, C., Qian, Z., Jiao, J., Ripley, E. M., & Feng, Y. (2016). Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Mineralium Deposita, 51(4), 557–574.

    Article  Google Scholar 

  • Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive theory of functions of several variables: Proceedings of a conference held at Oberwolfach April 25–May 1, 1976 (pp. 85–100). Springer.

  • Durand-Riard, P., Caumon, G., & Muron, P. (2010). Balanced restoration of geological volumes with relaxed meshing constraints. Computers & Geosciences, 36(4), 441–452.

    Article  Google Scholar 

  • Durand-Riard, P., Guzofski, C., Caumon, G., & Titeux, M. O. (2013). Handling natural complexity in three-dimensional geomechanical restoration, with application to the recent evolution of the outer fold and thrust belt, deep-water Niger Delta. AAPG bulletin, 97(1), 87–102.

    Article  Google Scholar 

  • Eberle, M. A., Grasset, O., & Sotin, C. (2002). A numerical study of the interaction between the mantle wedge, subducting slab, and overriding plate. Physics of the Earth and Planetary Interiors, 134(3–4), 191–202.

    Article  Google Scholar 

  • Fallara, F., Legault, M., & Rabeau, O. (2006). 3-D integrated geological modeling in the Abitibi Subprovince (Québec, Canada): Techniques and applications. Exploration and Mining Geology, 15(1–2), 27–43.

    Article  Google Scholar 

  • Gao, J. F., Zhou, M. F., Lightfoot, P. C., Wang, C. Y., Qi, L., & Sun, M. (2013). Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Economic Geology, 108(8), 1833–1848.

    Article  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence, 6, 721–741.

    Article  Google Scholar 

  • Georgsen, F., Røe, P., Syversveen, A. R., & Lia, O. (2012). Fault displacement modelling using 3D vector fields. Computational Geosciences, 16(2), 247–259.

    Article  Google Scholar 

  • Gratier, J. P., Guillier, B., Delorme, A., & Odonne, F. (1991). Restoration and balance of a folded and faulted surface by best-fitting of finite elements: Principle and applications. Journal of structural Geology, 13(1), 111–115.

    Article  Google Scholar 

  • Gratier, J.-P., & Guillier, B. (1993). Compatibility constraints on folded and faulted strata and calculation of total displacement using computational restoration (UNFOLD program). Journal of Structural Geology, 15(3–5), 391–402.

    Article  Google Scholar 

  • Griffiths, P., Jones, S., Salter, N., Schaefer, F., Osfield, R., & Reiser, H. (2002). A new technique for 3-D flexural-slip restoration. Journal of Structural Geology, 24(4), 773–782.

    Article  Google Scholar 

  • Hausdorff, F. (1914). Grundzüge der mengenlehre (Vol. 7). von Veit.

  • Haymon, R. M., Fornari, D. J., Edwards, M. H., Carbotte, S., Wright, D., & Macdonald, K. C. (1991). Hydrothermal vent distribution along the East Pacific Rise crest (9 09′–54′ N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth and Planetary Science Letters, 104(2–4), 513–534.

    Article  Google Scholar 

  • Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., & Perron, G. (2014). Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Mathematical Geosciences, 46(8), 931–953.

    Article  Google Scholar 

  • Huang, J., Mao, X., Chen, J., Deng, H., Dick, J. M., & Liu, Z. (2020). Exploring spatially non-stationary relationships in the determinants of mineralization in 3D geological space. Natural Resources Research, 29(1), 439–458.

    Article  Google Scholar 

  • Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence, 15(9), 850–863.

    Article  Google Scholar 

  • Kang, J., Song, X. Y., Long, T. M., Liang, Q. L., Barnes, S. J., Chen, L. M., & Gao, Y. L. (2022). Lithologic and geochemical constraints on the genesis of a newly discovered orebody in the Jinchuan intrusion, NW China. Economic Geology, 117(8), 1809–1825.

    Article  Google Scholar 

  • Keays, R. R. (1995). The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 34(1–3), 1–18.

    Article  Google Scholar 

  • Maerten, L., & Maerten, F. (2006). Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: Technique and industry applications. AAPG Bulletin, 90(8), 1201–1226.

    Article  Google Scholar 

  • Laurent, G., Caumon, G., Bouziat, A., & Jessell, M. (2013). A parametric method to model 3D displacements around faults with volumetric vector fields. Tectonophysics, 590, 83–93.

    Article  Google Scholar 

  • Laurent, G., Caumon, G., & Jessell, M. (2015). Interactive editing of 3D geological structures and tectonic history sketching via a rigid element method. Computers & Geosciences, 74, 71–86.

    Article  Google Scholar 

  • Lehmann, J., Arndt, N., Windley, B., Zhou, M. F., Wang, C. Y., & Harris, C. (2007). Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China. Economic Geology, 102(1), 75–94.

    Article  Google Scholar 

  • Li, C., & Naldrett, A. J. (1999). Geology and petrology of the Voisey’s Bay intrusion: reaction of olivine with sulfide and silicate liquids. Lithos, 47(1–2), 1–31.

    Article  Google Scholar 

  • Li, C., Xu, Z., de Waal, S. A., Ripley, E. M., & Maier, W. D. (2004). Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: implications for ore genesis. Mineralium deposita, 39, 159–172.

    Article  Google Scholar 

  • Li, C., & Ripley, E. M. (2011). The giant Jinchuan Ni-Cu-(PGE) deposit: Tectonic setting, magma evolution, ore genesis, and exploration implications.

  • Li, H., Li, X., Yuan, F., Jowitt, S. M., Dou, F., Zhang, M., et al. (2022). Knowledge-driven based three-dimensional prospectivity modeling of Fe–Cu skarn deposits; A case study of the Fanchang volcanic basin, anhui province, Eastern China. Ore Geology Reviews, 1, 105065.

    Article  Google Scholar 

  • Li, N., Bagas, L., Li, X., Xiao, K., Li, Y., Ying, L., & Song, X. (2016). An improved buffer analysis technique for model-based 3D mineral potential mapping and its application. Ore Geology Reviews, 76, 94–107.

    Article  Google Scholar 

  • Li, N., Song, X., Li, C., Xiao, K., Li, S., & Chen, H. (2019a). 3D geological modeling for mineral system approach to GIS-based prospectivity analysis: Case study of an MVT Pb–Zn deposit. Natural Resources Research, 28(3), 995–1019.

    Article  Google Scholar 

  • Li, N., Song, X., Xiao, K., Li, S., Li, C., & Wang, K. (2018). Part II: A demonstration of integrating multiple-scale 3D modelling into GIS-based prospectivity analysis: A case study of the Huayuan-Malichang district, China. Ore Geology Reviews, 95, 292–305.

    Article  Google Scholar 

  • Li, S. Z. (2012). Markov random field modeling in computer vision. Springer.

  • Li, X., Yuan, F., Zhang, M., Jia, C., Jowitt, S. M., Ord, A., et al. (2015). Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China. Ore Geology Reviews, 71, 633–654.

    Article  Google Scholar 

  • Li, X., Yuan, F., Zhang, M., Jowitt, S. M., Ord, A., Zhou, T., et al. (2019b). 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe–Cu skarn-type mineralization within the Yueshan orefield, Anqing district, Anhui Province, China. Ore Geology Reviews, 105, 1–17.

    Article  Google Scholar 

  • Li, Y. Z., & Mungall, J. E. (2022). Chalcophile Element Heterogeneity in Ni-Cu-(Platinum Group Element) Orebodies of Raglan Horizon in Cape Smith Belt: Implications for Ore-Forming Processes. Economic Geology, 117(5), 1131–1148.

    Article  Google Scholar 

  • Lightfoot, P. C., & Evans-Lamswood, D. (2015). Structural controls on the primary distribution of mafic–ultramafic intrusions containing Ni–Cu–Co–(PGE) sulfide mineralization in the roots of large igneous provinces. Ore Geology Reviews, 64, 354–386.

    Article  Google Scholar 

  • Liu, Z., Chen, J., Mao, X., Tang, L., Yu, S., Deng, H., et al. (2021). Spatial association between orogenic gold mineralization and structures revealed by 3D prospectivity modeling: A case study of the Xiadian gold deposit, Jiaodong Peninsula. China. Natural Resources Research, 30(6), 3987–4007.

    Article  Google Scholar 

  • Loh, W. Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14–23.

    Google Scholar 

  • Long, T. M., Song, X. Y., Kang, J., Liang, Q. L., Wang, Y. C., Li, D. X., Ai, Q.X., Suo, W.D., & Lu, J.Q (2023). Genesis of No. 2 orebody of the Jinchuan magmatic Ni-Cu-(PGE) sulfide deposit, NW China: New constraints from the newly discovered deep extension. Mineralium Deposita, 58, 1–16.

    Article  Google Scholar 

  • Lovely, P. J., Jayr, S. N., & Medwedeff, D. A. (2018). Practical and efficient three-dimensional structural restoration using an adaptation of the GeoChron model. AAPG Bulletin, 102(10), 1985–2016.

    Article  Google Scholar 

  • Lu, Y., Lesher, C. M., Yang, L., Leybourne, M. I., He, W., Yuan, M., & Gao, X. (2021). Genesis of the Jinbaoshan PGE-(Cu)-(Ni) deposit: Distribution of chalcophile elements and platinum-group minerals. The Canadian Mineralogist, 59(6), 1511–1542.

    Article  Google Scholar 

  • Mallet, J. L. (1989). Discrete smooth interpolation. ACM Transactions on Graphics, 8(2), 121–144.

    Article  Google Scholar 

  • Mallet, J. L. (1992). GOCAD: A computer aided design program for geological applications. Three-dimensional modelling with geoscientific information systems (pp. 123–141). Springer.

    Chapter  Google Scholar 

  • Mallet, J. L. (2002). Geomodeling. Oxford University Press.

    Google Scholar 

  • Mao, X., Li, L., Liu, Z., Zeng, R., Dick, J. M., Yue, B., et al. (2019a). Multiple magma conduits model of the Jinchuan Ni-Cu-(PGE) deposit, northwestern China: Constraints from the geochemistry of platinum-group elements. Minerals, 9(3), 187.

    Article  Google Scholar 

  • Mao, X., Ren, J., Liu, Z., Chen, J., Tang, L., Deng, H., et al. (2019b). Three-dimensional prospectivity modeling of the Jiaojia-type gold deposit, Jiaodong Peninsula, Eastern China: A case study of the Dayingezhuang deposit. Journal of Geochemical Exploration, 203, 27–44.

    Article  Google Scholar 

  • Mao, X., Zhang, B., Deng, H., Zou, Y., & Chen, J. (2016). Three-dimensional morphological analysis method for geologic bodies and its parallel implementation. Computers & Geosciences, 96, 11–22.

    Article  Google Scholar 

  • Mao, X., Zhao, Y., Tang, Y., Peng, Z., Chen, J., & Deng, H. (2013). Three-dimensional morphological analysis method for geological interfaces based on TIN and its application. J. Cent. South Univ, 44, 1493–1499.

    Google Scholar 

  • Mao, X., Liu, P., Deng, H., Liu, Z., Li, L., Wang, Y., & Liu, J. (2023). A Novel approach to three-dimensional inference and modeling of magma conduits with exploration data: A case study from the Jinchuan Ni–Cu sulfide deposit, NW China. Natural Resources Research, 1–28.

  • Mao, Y. J., Barnes, S. J., Duan, J., Qin, K. Z., Godel, B. M., & Jiao, J. (2018). Morphology and particle size distribution of olivines and sulphides in the Jinchuan Ni–Cu sulphide deposit: Evidence for sulphide percolation in a crystal mush. Journal of Petrology, 59(9), 1701–1730.

    Google Scholar 

  • Massot, J. (2002). Implémentation de méthodes de restauration équilibrée 3D. Institut National Polytechnique de Lorraine.

  • Moretti, I. (2008). Working in complex areas: New restoration workflow based on quality control, 2D and 3D restorations. Marine and Petroleum Geology, 25(3), 205–218.

    Article  Google Scholar 

  • Moretti, I., Lepage, F., & Guiton, M. (2006). KINE3D: a new 3D restoration method based on a mixed approach linking geometry and geomechanics. Oil & Gas Science and Technology, 61(2), 277–289.

    Article  Google Scholar 

  • Mungall, J. E., Jenkins, M. C., Robb, S. J., Yao, Z., & Brenan, J. M. (2020). Upgrading of magmatic sulfides, revisited. Economic Geology, 115(8), 1827–1833.

    Article  Google Scholar 

  • Muron, P. (2005). Méthodes numériques 3-D de restauration des structures géologiques faillées. Th. Doct. Institut National Polytechnique de Lorraine. Nancy, France, 30.

  • Naldrett, A. J. (1999). World-class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium deposita, 34, 227–240.

    Article  Google Scholar 

  • Naldrett, A. (2011). Fundamentals of magmatic sulfide deposits.

  • Naldrett, A., & Fedorenko, V. (1995). Ni-Cu-PGE deposits of Noril’sk region, Siberia: their formation in conduits for flood basalt volcanism. Transactions of the Institution of Mining and Metallurgy Section B Applied Earth Science, 104, 1.

    Google Scholar 

  • Naldrett, A. J. (1992). A model for the Ni-Cu-PGE ores of the Noril’sk region and its application to other areas of flood basalt. Economic Geology, 87(8), 1945–1962.

    Article  Google Scholar 

  • Naldrett, A. J. (2004). Magmatic sulfide deposits: Geology, geochemistry and exploration. Springer.

  • Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: The variogram and kriging. Springer.

  • Omre, H. (1984). The variogram and its estimation. In Geostatistics for natural resources characterization (pp. 107–125): Springer.

  • Patten, C. G., Coltat, R., Junge, M., Peillod, A., Ulrich, M., Manatschal, G., et al. (2022). Ultramafic-hosted volcanogenic massive sulfide deposits: An overlooked sub-class of VMS deposit forming in complex tectonic environments. Earth-Science Reviews, 224, 103891.

    Article  Google Scholar 

  • Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Paper presented at the Geological Society, London, Petroleum Geology Conference series.

  • Porter, T. M. (2016). Regional tectonics, geology, magma chamber processes and mineralisation of the Jinchuan nickel-copper-PGE deposit, Gansu Province, China: A review. Geoscience Frontiers, 7(3), 431–451.

    Article  Google Scholar 

  • Rodriguez-Galiano, V., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7), 1336–1354.

    Article  Google Scholar 

  • Rouby, D., Xiao, H., & Suppe, J. (2000). 3-D restoration of complexly folded and faulted surfaces using multiple unfolding mechanisms. AAPG bulletin, 84(6), 805–829.

    Google Scholar 

  • Rouby, D., Raillard, S., Guillocheau, F., Bouroullec, R., & Nalpas, T. (2002). Kinematics of a growth fault/raft system on the West African margin using 3-D restoration. Journal of structural geology, 24(4), 783–796.

    Article  Google Scholar 

  • Ruopp, M. D., Perkins, N. J., Whitcomb, B. W., & Schisterman, E. F. (2008). Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 50(3), 419–430.

    Article  Google Scholar 

  • Song, X.-Y., Danyushevsky, L. V., Keays, R. R., Chen, L.-M., Wang, Y.-S., Tian, Y.-L., et al. (2012). Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni–Cu sulfide deposit, NW China. Mineralium Deposita, 47(3), 277–297.

    Article  Google Scholar 

  • Song, X.-Y., Keays, R. R., Zhou, M. F., Qi, L., Ihlenfeld, C., & Xiao, J.-F. (2009). Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochimica et Cosmochimica Acta, 73(2), 404–424.

    Article  Google Scholar 

  • Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., & Seidel, H.-P. (2004). Laplacian surface editing. Paper presented at the Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing.

  • Sorkine, O. (2005). Laplacian mesh processing. Eurographics (State of the Art Reports), 4(4), 1.

    Google Scholar 

  • Sprague, K., de Kemp, E., Wong, W., McGaughey, J., Perron, G., & Barrie, T. (2006). Spatial targeting using queries in a 3-D GIS environment with application to mineral exploration. Computers & Geosciences, 32(3), 396–418.

    Article  Google Scholar 

  • Su, S., Li, C., Zhou, M. F., Ripley, E. M., & Qi, L. (2008). Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China. Mineralium Deposita, 43, 609–622.

    Article  Google Scholar 

  • Su, S., Tang, Z., Zhou, M., & Song, C. (2014). Magmatic Conduit Metallogenic System in Jinchuan Cu-Ni (PGE) Sulfide Deposit. Paper presented at the AGU Fall Meeting Abstracts.

  • Tang, P., Wang, C., & Dai, X. (2016). A majorized Newton-CG augmented Lagrangian-based finite element method for 3D restoration of geological models. Computers & Geosciences, 89, 200–206.

    Article  Google Scholar 

  • Tang, Z., & Li, W. (1995a). The metallogenetic model and geological characteristics of the Jinchuan Pt-bearing Ni–Cu sulfide deposit. Geological Publishing House.

  • Tang, Z., & Li, W. (1995b). Mineralization model and geology of the Jinchuan deposit bearing PGE. Geological Publishing House.

  • Titley, S., & Heidrick, T. (1978). Intrusion and fracture styles of some mineralized porphyry systems of the southwestern Pacific and their relationship to plate interactions. Economic Geology, 73(5), 891–903.

    Article  Google Scholar 

  • Tosdal, R., & Richards, J. (2001). Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits.

  • Valentine, G. A., & Krogh, K. E. (2006). Emplacement of shallow dikes and sills beneath a small basaltic volcanic center–The role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth and Planetary Science Letters, 246(3–4), 217–230.

    Article  Google Scholar 

  • Wang, G., & Huang, L. (2012). 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China. Geoscience Frontiers, 3(4), 483–491.

    Article  Google Scholar 

  • Wang, G., Li, R., Carranza, E. J. M., Zhang, S., Yan, C., Zhu, Y., et al. (2015). 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geology Reviews, 71, 592–610.

    Article  Google Scholar 

  • Wang, G., Zhang, S., Yan, C., Song, Y., Sun, Y., Li, D., et al. (2011). Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region. China. Computers & Geosciences, 37(12), 1976–1988.

    Article  Google Scholar 

  • Wang, J., & Tang, J. (2011). Morphological evolution of the ultrabasic rocks in the Jinchuan mine area and its constraints on the tectonic process. Acta Geologica Sinica, 85(3), 323–329.

    Google Scholar 

  • Williams, G. D., Kane, S. J., Buddin, T. S., & Richards, A. J. (1997). Restoration and balance of complex folded and faulted rock volumes: Flexural flattening, jigsaw fitting and decompaction in three dimensions. Tectonophysics, 273(3–4), 203–218.

    Article  Google Scholar 

  • Xiao, K., Li, N., Porwal, A., Holden, E.-J., Bagas, L., & Lu, Y. (2015). GIS-based 3D prospectivity mapping: A case study of Jiama copper-polymetallic deposit in Tibet, China. Ore Geology Reviews, 71, 611–632.

    Article  Google Scholar 

  • Xue, S., Wang, Q., Wang, Y., Song, W., & Deng, J., (2023). The roles of various types of crustal contamination in the genesis of the Jinchuan magmatic Ni–Cu–PGE deposit: New mineralogical and C–S–Sr–Nd Isotope Constraints. Economic Geology.

  • Yakubchuk, A., & Nikishin, A. (2004). Noril’sk–Talnakh Cu–Ni–PGE deposits: a revised tectonic model. Mineralium Deposita, 39, 125–142.

    Article  Google Scholar 

  • Yalin, G., Zhongli, T., Mingjie, Z., Yulong, T., & Lizhong, X. (2009). Geochemical Characteristics, Genesis of Concealed Cu-rich Ore Body in the Jinchuan Deposit, Northwestern China, and Its Prospecting. Acta Geologica Sinica, 83(6), 1085–1100.

    Article  Google Scholar 

  • Yang, L., Zhao, R., Wang, Q., Liu, X., & Carranza, E. J. M. (2018). Fault geometry and fluid-rock reaction: combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China. Journal of Structural Geology, 111, 14–26.

    Article  Google Scholar 

  • Yuan, F., Li, X., Zhang, M., Jowitt, S. M., Jia, C., Zheng, T., et al. (2014). Three-dimensional weights of evidence-based prospectivity modeling: A case study of the Baixiangshan mining area, Ningwu Basin, Middle and Lower Yangtze Metallogenic Belt, China. Journal of Geochemical Exploration, 145, 82–97.

    Article  Google Scholar 

  • Zanchi, A., Francesca, S., Stefano, Z., Simone, S., & Graziano, G. (2009). 3D reconstruction of complex geological bodies: Examples from the Alps. Computers & Geosciences, 35(1), 49–69.

    Article  Google Scholar 

  • Zeng, R., Lai, J., Mao, X., & Tao, J. (2013). Evolution of fault system and its controlling on Jinchuan Cu–Ni (PGE) sulfide deposit. The Chinese Journal of Nonferrous Metals, 23(9), 2574–2583.

    Google Scholar 

  • Zeng, R. Y. (2017) The tectono-magma events and their geodynamic implications in the Longshoushan area, Gansu.

  • Zhang, M., Zhou, G., Shen, L., Zhao, W., Liao, B., Yuan, F., et al. (2019). Comparison of 3D prospectivity modeling methods for Fe-Cu skarn deposits: A case study of the Zhuchong Fe-Cu deposit in the Yueshan orefield (Anhui), eastern China. Ore Geology Reviews, 114, 103126.

    Article  Google Scholar 

  • Zhou, M.-F., Yang, Z., Song, X.-Y., Keays, R. R., & Lesher, C. (2002). Magmatic Ni-Cu-(PGE) sulphide deposits in China. In The geology, geochemistry, mineralogy and beneficiation of the platinum-group elements (pp. 339–366). Canadian Institute Mineral Metallogy Petroleum.

  • Zuo, R., & Xiong, Y. (2020). Geodata science and geochemical mapping. Journal of Geochemical Exploration, 209, 106431.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the editors and anonymous reviewers for their constructive comments. We are also grateful to the Nickel Cobalt Research and Design Institute, Jinchuan Group Co., Ltd for data support. This research was funded by the National Natural Science Foundation of China (Nos. 42030809, 41972309, 42272344, 42072325, 72088101, and 41772349) and the Science and Technology Innovation Program of Hunan Province (2021RC4055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Deng.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Su, Z., Deng, H. et al. Three-Dimensional Mineral Prospectivity Modeling with Geometric Restoration: Application to the Jinchuan Ni–Cu–(PGE) Sulfide Deposit, Northwestern China. Nat Resour Res 33, 75–105 (2024). https://doi.org/10.1007/s11053-023-10269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10269-2

Keywords

Navigation