Skip to main content

Advertisement

Log in

Exploring Chromium Ore Consumption: New Perspectives from Hybrid CEEMDAN–S-Curve Modeling

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Chromium ore is an important metallic raw material that is widely used in the metallurgy industry, chemical industry, and refractory. Clarifying the consumption mechanism of chromium ore is crucial for policy making, enterprise production, and commodity investment. Based on the signal decomposition tool and S-curve model, a new hybrid complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)–S-curve model is proposed to analyze chromium ore consumption of different countries for the last 100 years. The results showed the following. (1) Per capita chromium ore consumption can be decomposed into low-frequency, medium-frequency, and high-frequency components, which contribute more than 55%, 10–30%, and less than 15%, respectively, to the volatility of the original series. These can be interpreted as economic development represented by GDP per capita, shocks induced by significant events, and normal market disequilibrium, respectively. (2) The CEEMDAN–S-curve facilitates understanding and data logic of data by linking consumption to end-use segments. (3) A new strategy is provided to analyze the consumption mechanism of other commodities for future modelers. Moreover, based on the results, a series of topics related to chromium ore consumption are discussed, such as resource recovery, environmental pollution, CO2 emissions, and consumption trends. The discussions emphasize that, to reach sustainable development goals, a series of measures should be implemented, such as developing advanced smelting technology, recycling technology, and effective enforcement measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Sources: Zhang et al, 2019; USGS, 2021; Market Watch, 2022

Figure 2

Sources: ISSF, 2021; Gao et al., 2021

Figure 3

Sources: BGS (British Geological Survey), USGS (U.S. Geological Survey), WBMS (World Bureau of Metal Statistics)

Figure 4
Figure 5
Figure 6
Figure 7

Sources: BGS (British Geological Survey), USGS (U.S. Geological Survey), UN Comtrade, WBMS (World Bureau of Metal Statistics)

Figure 8

Sources: BGS (British Geological Survey), USGS (U.S. Geological Survey), WB (The World Bank), UN Comtrade, WBMS (World Bureau of Metal Statistics); data of population and GDP per capita are from UN (United Nations) and GGDC (The Groningen Growth and Development Centre). *Note: Urbanization rate = Urban population/ total population × 100%. India is a developing country with a small urban population, so its urbanization rate keeps the low level. Therefore, there will be obvious gap with other developed countries in (c)

Figure 9

Sources: BGS (British Geological Survey), USGS (U.S. Geological Survey), WB (The World Bank), UN Comtrade, WBMS (World Bureau of Metal Statistics); data of population and GDP per capita are from UN (United Nations) and GGDC (The Groningen Growth and Development Centre)

Figure 10
Figure 11
Figure 12
Figure 13

Sources: CISA (China Iron and Steel Association), General Administration of Customs of P. R. China, National Bureau of Statistics of P. R. China, WBMS

Figure 14

Sources: General Administration of Customs of P. R. China, Ministry of Natural Resources of P. R. China, National Bureau of Statistics of P.R. China

Figure 15

Sources: CISA (China Iron and Steel Association), General Administration of Customs of P. R. China, National Bureau of Statistics of P. R. China, WBMS

Figure 16
Figure 17
Figure 18

Sources: CISA, ISSF

Figure 19

Source: ISSF

Figure 20

Sources: IAI, ISSF, WSA

Figure 21

Sources: ISSF, WSA; data of population and GDP per capita are from UN (United Nations) and GGDC (The Groningen Growth and Development Centre)

Similar content being viewed by others

Notes

  1. MATLAB code is available at: http://perso.ens-lyon.fr/patrick.flandrin/emd.html.

References

  • Ahmed, A. E., Mohamed, A. E., Zakaria, A., Ye, H. W., & Zhang, J. H. (2020). Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility. Resources Policy, 65, 101555.

    Article  Google Scholar 

  • Bardi, U. (2005). The mineral economy: A model for the shape of oil production curves. Energy Policy, 33, 53–61.

    Article  Google Scholar 

  • Bleischwitz, R., Nechifor, V., Winning, M., Huang, B., & Geng, Y. (2018). Extrapolation or saturation—Revisiting growth patterns, development stages and decoupling. Global Environmental Change, 48, 86–96.

    Article  Google Scholar 

  • Becker, T., & Intoyoad, W. (2017). Context aware process mining in logistics. Procedia Crip, 63, 557–562.

    Article  Google Scholar 

  • British Geological survey (BGS). (2021). UK and world mineral statistics datasets. Retrieved November 10, 2021 from https://www.bgs.ac.uk/geological-data/

  • CBC Metal. (2021). Data service. Retrieved December 10, 2021 from http://www.cbcie.com/db/price/21530.html

  • Chen, C. F., Lai, M. C., & Yeh, C. C. (2012). Forecasting tourism demand based on empirical mode decomposition and neural network. Knowledge-Based Systems, 26, 281–287.

    Article  Google Scholar 

  • Chen, X. J., Yan, Q., & Ma, Q. (2017). Influence of the laser pre-quenched substrate on an electroplated chromium coating/steel substrate. Applied Surface Science, 405, 283–279.

    Article  Google Scholar 

  • Cheng, C. H., & Wei, L. Y. (2014). A novel time-series model based on empirical mode decomposition for forecasting TAIEX. Economic Modelling, 36, 136–141.

    Article  Google Scholar 

  • Cheng, H., Zhou, T., Qian, L., Lu, L., Lin, C., & Vipul, B. (2013). Anthropogenic chromium emissions in China from 1990 to 2009. PLoS ONE, 9(2), e87753.

    Article  Google Scholar 

  • China Special Steel Enterprises Association (CSSA). (2021). China Stainless Steel Statistics in 2000–2018. Retrieved December 10, 2021 from http://www.cssc.org.cn/

  • China Iron and Steel Association. (2021). Statistic data. Retrieved November 10, 2021 from http://www.chinaisa.org.cn/gxportal/xfgl/portal/index.html

  • Coetzee, J. J., Neetu, B., & Chirwa, E. M. (2018). Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Exposure and Health, 12, 51–62.

    Article  Google Scholar 

  • Colominas, M. A., Schlotthauer, G., & Torres, M. E. (2014). Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomedical Signal Processing and Control, 14, 19–29.

    Article  Google Scholar 

  • Correa, C., (2000). Integrating public health concerns into patent legislation in developing countries Geneva. The South Centre. Retrieved November 10, 2022, from https://www.southcentre.int/wp-content/uploads/2017/06/Bk_2000_Integrating-Public-Health-Concerns-into-Patent-Legislation_EN.pdf

  • Cullen, J. M., Allwood, J. M., & Bambach, M. D. (2012). Mapping the global flow of steel: From steelmaking to end-use goods. Environmental Science & Technology, 46(24), 13048–13055.

    Article  Google Scholar 

  • Dai, M., Wang, P., Chen, W. Q., & Liu, G. (2019). Scenario analysis of China’s aluminum cycle reveals the coming scrap age and the end of primary aluminum boom. Journal of Cleaner Production, 226, 793–804.

    Article  Google Scholar 

  • Daniela, B., Giovambattista, C., Francesco, M., & LcLéonard, S. (2003). Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting. Neural Networks, 16, 375–387.

    Article  Google Scholar 

  • De La Peña, L., Guo, R., Cao, X. J., Ni, X. J., & Zhang, W. (2022). Accelerating the energy transition to achieve carbon neutrality. Resources, Conservation and Recycling, 177, 105977.

    Google Scholar 

  • Department of Natural Resources of Canada. (2021). Critical minerals list. Retrieved December 30, 2021, from https://magazine.cim.org/en/news/2021/canada-finalizes-critical-minerals-list-en/

  • Disna, E., Zeng, X. L., Wang, Z. S., Eva, A., & Li, J. H. (2019). Forecasting the temporal stock generation and recycling potential of metals towards a sustainable future: The case of gallium in China. Science of The Total Environment, 689, 332–340.

    Article  Google Scholar 

  • European Commission. (2014). Raw Materials Initiative. Retrieved December 30, 2021, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52014DC0297

  • Fei, F., Qu, L., Wen, Z., Xue, Y., & Zhang, H. (2016). How to integrate the informal recycling system into municipal solid waste management in developing countries: Based on a China’s case in Suzhou urban area. Resources, Conservation and Recycling, 110, 74–86.

    Article  Google Scholar 

  • Fernando, S. L., Francisco, J. C. J., Ana, S. S., Alicja, K., & Pedro, R. F. (2015). Forecasting the COMEX copper spot price by means of neural networks and ARIMA models. Resources Policy, 45, 37–43.

    Article  Google Scholar 

  • Gao, Z. Y., Geng, Y., Zeng, X. L., Tian, X., Yao, T. L., Song, X. Q., & Su, C. (2021). Evolution of the anthropogenic chromium cycle in China. The Official Journal of the International Society for Industrial Ecology (ISIE), 26(2), 592–608.

    Article  Google Scholar 

  • Gao, X. R., Wang, A. J., Liu, G. W., Liu, C. H., & Yan, K. (2018). Expanded S-curve model of a relationship between crude steel consumption and economic development: Empiricism from case studies of developed economies. Natural Resources Research, 28, 547–562.

    Article  Google Scholar 

  • General Administration of Customs of P. R. China. (2021). Customs statistics. Retrieved November 10, 2021 from http://www.customs.gov.cn/

  • Ghosh, S. (2006). Steel consumption and economic growth: Evidence from India. Resources Policy, 31, 7–11.

    Article  Google Scholar 

  • Gompertz, B. (1825). On nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 115, 513–585.

    Article  Google Scholar 

  • Groningen Growth and Development Centre (GGDC). (2021). Total economy database. Retrieved November 10, 2021 from http://www.ggdc.net

  • Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N. T., Schechner, D., Warren, S., Yang, M. Y., & Zhu, C. (2012). Methodology of metal criticality determination. Environmental Science & Technology, 46(2), 1063–1070.

    Article  Google Scholar 

  • Höök, M., Li, J., Oba, N., & Snowden, S. (2011). Descriptive and predictive growth curves in energy system analysis. Natural Resources Research, 20, 103–116.

    Article  Google Scholar 

  • Hotard, D. G., & Ristroph, J. H. (1984). A regional logistic function model for crude oil production. Energy, 9(7), 565–570.

    Article  Google Scholar 

  • Hu, J. M., Wang, J. Z., & Zeng, G. W. (2013). A hybrid forecasting approach applied to wind speed time series. Renewable Energy, 60, 185–194.

    Article  Google Scholar 

  • Huang, N. E., Wu, M. L., Qu, W. D., Long, S. R., & Shen, S. S. P. (2003). Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry, 19, 245–268.

    Article  Google Scholar 

  • Huang, M., & Zhai, P. (2021). Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society. Advances in Climate Change Research, 12(2), 281–286.

    Article  Google Scholar 

  • International Aluminum Institute (IAI), (2021). International Aluminum Statistics. Retrieved June 10, 2022, from https://international-aluminium.org/statistics/primary-aluminium-production/

  • Ichiro, D., Yasunari, M., & Yoshihiro, A. (2010). Substance flow analysis of chromium and nickel in the material flow of stainless steel in Japan. Resources, Conservation and Recycling, 54, 851–863.

    Article  Google Scholar 

  • International Stainless Steel Forum (ISSF). (2015). Stainless Steel and CO2: Facts and Scientific Observations. Retrieved June 10, 2022, from https://aceroplatea.es/docs/ISSF_Stainless_Steel_and_CO2.pdf

  • International Stainless Steel Forum (ISSF). (2021). Statistics. Retrieved June 10, 2022, from https://www.worldstainless.org/statistics/

  • Izzet, K. (2021). Modelling and forecasting the oil consumptions of the BRICS-T countries. Energy, 220(1), 119720.

    Google Scholar 

  • Jefferson Lab, U.S. Department of Energy. (2022). The Element Chromium. Retrieved May 30, 2021, from https://education.jlab.org/itselemental/ele024.html

  • Jerosha, I., Irshad, I. S., Ali, J., Eman, A. G., Wang, S. Q., Chen, Z. Q., & Chen, Z. L. (2021). The excursion covered for the elimination of chromate by exploring the coordination mechanisms between chromium species and various functional groups. Coordination Chemistry Reviews, 437, 213868.

    Article  Google Scholar 

  • Jiang, G. Y., (2018). Proceedings of the 2018 7th international conference on energy and environmental protection. In Advances in Engineering Research (pp. 1363–1367).

  • John, F. P. (1995). Chromium life cycle study. Retrieved December 30, 2021, from https://pubs.usgs.gov/usbmic/ic-9411/

  • John, F. P., (2007). Chromium, a national mineral commodity perspective. Retrieved December 30, 2021, from https://pubs.usgs.gov/of/2007/1167/ofr2007-1167.pdf

  • Johnson, J., & Graedel, T. E. (2008). The “hidden” trade of metals in the United States. Journal of Industrial Ecology., 12(5–6), 739–753.

    Article  Google Scholar 

  • Johnson, J., Schewel, L., & Graedel, T. E. (2006). The contemporary anthropogenic chromium cycle. Environmental Science & Technology, 40(22), 7060–7069.

    Article  Google Scholar 

  • Johnson, J., Reck, B. K., Wang, T., & Graedel, T. E. (2008). The energy benefit of stainless steel recycling. Energy Policy, 36(1), 181–192.

    Article  Google Scholar 

  • Lempel, A., & Ziv, J. (1976). On the complexity of finite sequences. IEEE Transactions on Information Theory, 22(1), 75–81.

    Article  Google Scholar 

  • Li, H. Z., Guo, S., Li, C. J., & Sun, J. Q. (2013). A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowledge-Based Systems, 37, 378–387.

    Article  Google Scholar 

  • Lin, S. H., Mao, J. S., Chen, W. Q., & Shi, L. (2019). Indium in mainland China: Insights into use, trade, and efficiency from the substance flow analysis. Resources, Conservation and Recycling, 149, 312–321.

    Article  Google Scholar 

  • Linda, W. (2014). Trends and developments in long-term steel demand—The intensity-of-use hypothesis revisited. Resources. Policy, 39, 134–143.

    Article  Google Scholar 

  • Liu, G., Bangs, C. E., & Müller, D. B. (2013). Stock dynamics and emission pathways of the global aluminum cycle. Nature Climate Change, 3, 338–342.

    Article  Google Scholar 

  • Liu, G., & Müller, D. B. (2012). Addressing sustainability in the aluminum industry: A critical review of life cycle assessments. Journal of Cleaner Production, 35, 108–117.

    Article  Google Scholar 

  • Liu, H. Y., Chen, N., Feng, C. P., Tong, S., & Li, R. (2017). Impact of electro-stimulation on denitrifying bacterial growth and analysis of bacterial growth kinetics using a modified Gompertz model in a bio-electrochemical denitrification reactor. Bioresource Technology, 232, 344–353.

    Article  Google Scholar 

  • Liu, X., Chen, Q., Zhang, Y., & Gao, T. M. (2015). Chinese chromium demand forecasting and resource supply security. Resources Science, 37, 933–943.

    Google Scholar 

  • Ma, H., Hung, M. L., & Chen, P. C. (2007). A systemic health risk assessment for the chromium cycle in Taiwan. Environment International, 33(2), 206–218.

    Article  Google Scholar 

  • Madhav, P., & Athanasios, K. K. (2021). Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies. Separation and Purification Technology, 275(15), 1189981.

    Google Scholar 

  • Marinakis, Y. D. (2012). Forecasting technology diffusion with the Richards model. Technological Forecasting and Social Change, 79, 172–179.

    Article  Google Scholar 

  • Market Watch. (2022). Global chromium market developing strategies, growth key factors, size, share, opportunities and forecast to 2027. Retrieved May 20, 2022, from https://www.maximizemarketresearch.com/market-report/global-chromium-market/55583/

  • Mejame, P. P. M., David, K., Zsuzsa, B., & Ying, H. H. (2022). Circular economy: A sustainable management strategy for rare earth elements consumption in Australia. Resources, Conservation and Recycling, 4, 100157.

    Google Scholar 

  • Menzie, W. D., Barry, J. J., Bleiwas, D. I., Bray, E. L., Goonan, T. G., & Matos, G., (2010). The Global flow of aluminum from 2006 through 2025. Science for a Changing World, 1–73. Retrieved June 10, 2021, from https://pubs.usgs.gov/of/2010/1256/

  • Michael, A. K. (2022). Product innovation, diffusion and endogenous growth. Review of Economic Dynamics. https://doi.org/10.1016/j.red.2022.05.001

    Article  Google Scholar 

  • Michael, G. (2013). Handbook of ferroalloys. Butterworth-Heinemann. https://doi.org/10.1016/C2011-0-04204-7

    Article  Google Scholar 

  • Ministry of Economy, Trade and Industry of Japan. (2020). Critical minerals list. Retrieved December 30, 2021, from https://www.meti.go.jp/shingikai/enecho/shigen_nenryo/kogyo/pdf/report01_01.pdf

  • Ministry of Industry, Innovation and Science, Australian Trade and Investment Commission. (2020). Australia’s critical minerals strategy. Retrieved December 30, 2021, from https://www.industry.gov.au/sites/default/files/2019-03/australias-critical-minerals-strategy-2019.pdf

  • Ministry of Industry and Information Technology of P. R. China (MIIT). (2010). Interpretation of administrative measures on the production and construction license of chromium compounds, 2010. Retrieved May 30, 2022, from http://www.gov.cn/gzdt/2010-09/25/content_1709433.htm

  • Ministry of Natural Resources of P. R. China. (2015). National Mineral Resources Planning (2016–2020). Retrieved December 30, 2021, from http://www.mnr.gov.cn/gk/ghjh/201811/t20181101_2324927.html

  • Ministry of Natural Resources of P. R. China. (2021a). Data service. Retrieved December 30, 2021a, from http://www.mnr.gov.cn/sj/sjfw/

  • Ministry of Natural Resources of P. R. China. (2021b). Specifications for iron, manganese and chromium mineral exploration. Retrieved December 30, 2021b, from http://www.nrsis.org.cn/portal/

  • Modis, T. (2007). Strengths and weaknesses of S-curves. Technological Forecasting and Social Change, 74, 866–872.

    Article  Google Scholar 

  • Müller, D. B. (2006). Stock dynamics for forecasting material flows-case study for housing in the Netherlands. Ecological Economics, 59(1), 142–156.

    Article  Google Scholar 

  • Müller, D. B., Wang, T., & Duval, B. (2016). Patterns of iron use in societal evolution. Environmental Science & Technology, 45(1), 182–188.

    Article  Google Scholar 

  • Müller, E., Hilty, L. M., Widmer, R., Schluep, M., & Faulstich, M. (2014). Modeling metal stocks and flows: A review of dynamic material flow analysis methods. Environmental Science & Technology, 48, 2102–2113.

    Article  Google Scholar 

  • Nacy, J., (1992). Techniques and Instrumentation in Analytical Chemistry. Retrieved May 30, 2021, from https://www.sciencedirect.com/bookseries/techniques-and-instrumentation-in-analytical-chemistry/volumes

  • Nakajima, K., Ohno, H., Kondo, Y., Matsubae, K., Takeda, O., Miki, T., Nakamura, S., & Nagasaka, T. (2013). Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input–output analysis. Environmental Science & Technology, 47(9), 4653–4660.

    Article  Google Scholar 

  • Nakamura, S., Kondo, Y., Nakajima, K., Ohno, H., & Pauliuk, S. (2017). Quantifying recycling and losses of Cr and Ni in steel throughout multiple life cycles using MaTrace-alloy. Environmental Science & Technology, 51(17), 9469–9476.

    Article  Google Scholar 

  • National Bureau of Statistics of P. R. China. (2021). National data. Retrieved November 10, 2021 from https://data.stats.gov.cn/

  • National Center for Biotechnology Information. (2022). Pub Chem Element Summary for Atomic Number 24, Chromium. Retrieved May 20, 2022, from https://pubchem.ncbi.nlm.nih.gov/element/Chromium

  • Neha, S., & Krishan, K. P. (2015). Artificial intelligence methods for oil price forecasting: A review and evaluation. Energy Systems, 6, 479–506.

    Article  Google Scholar 

  • Niaz, B. B., & Ramos, P. M. (2013). Crude oil price forecasting techniques: A comprehensive review of literature. SSRN Electronic Journal, 7, 1–32.

    Google Scholar 

  • Olsson, A., (2008). Trends and developments in the intensity of steel use: An economic analysis. Lulea University of Technology. Retrieved November 10, 2021 from http://refhub.elsevier.com/S0921-3449(16)30023-4/sbref0200

  • Pan, Z. S., Zhang, Z. Z., Wang, X. W., Yang, Y. P., & Zhang, Z. N. (2018). Analysis of status and future of recycled chromium resources in China. China Mining Magazine, 27(8), 17–21. in Chinese.

    Google Scholar 

  • Pauliuk, S., Milford, R. L., Müller, D. B., & Allwood, J. M. (2013). The steel scrap age. Environmental Science & Technology, 47, 3448–3454.

    Article  Google Scholar 

  • Pauliuk, S., Wang, T., & Müller, D. B. (2012). Moving toward the circular economy: The role of stocks in the Chinese steel cycle. Environmental Science & Technology, 46, 148–154.

    Article  Google Scholar 

  • Qin, Z. C., Deng, X., Griscom, B., Huang, Y., Li, T. T., Smith, P., Yuan, W. P., & Zhang, W. (2021). Natural climate solutions for China: The last mile to carbon neutrality. Advances in Atmospheric Sciences, 38, 889–895.

    Article  Google Scholar 

  • Rachidi, R., Nwaila, T., Zhang, S., Bourdeau, E., & Ghorbani, Y. (2021). Assessing cobalt supply sustainability through production forecasting and implications for green energy policies. Resources Policy, 74, 102423.

    Article  Google Scholar 

  • Reck, B. K., Chambon, M., Hashimoto, S., & Graedel, T. E. (2010). Global stainless steel cycle exemplifies China’s rise to metal dominance. Environmental Science & Technology, 44(10), 3940–3946.

    Article  Google Scholar 

  • Reck, B. K., & Gordon, R. B. (2008). Nickel and chromium cycles: Stocks and flows project part IV. Journal of the Minerals Metals and Materials Society, 60, 55–59.

    Article  Google Scholar 

  • Reck, B. K., Müller, D. B., Rostkowski, K., & Graedel, T. E. (2008). Anthropogenic nickel cycle: Insights into use, trade, and recycling. Environmental Science & Technology, 42(9), 3394–3400.

    Article  Google Scholar 

  • Ren, S., Li, H. J., Wang, Y. L., Guo, C., Feng, S. D., & Wang, X. X. (2021). Comparative study of the China and U.S. import trade structure based on the global chromium ore trade network. Resources Policy, 73, 102198.

    Article  Google Scholar 

  • Richmond, P., & Roehner, B. M. (2016). Predictive implications of Gompertz’s law. Physica A: Statistical Mechanics and its Applications, 447, 446–454.

    Article  Google Scholar 

  • Riekkola, V. M., (1999). Finnish expert report on best available techniques in ferrochromium production. Helsinki, Finland.

  • Rogers, E. M. (2003). Diffusion of innovations. Free Press.

    Google Scholar 

  • Sander, S. N., René, K., Benjamin, S., Brenda, M. X., & Arnold, T. (2022). Early-stage assessment of minor metal recyclability. Resources, Conservation and Recycling, 176, 105881.

    Article  Google Scholar 

  • Schipper, B. W., Lin, H. C., Meloni, M. A., Wansleeben, K., Heijungs, R., & van der Voet, E. (2018). Estimating global copper demand until 2100 with regression and stock dynamics. Resources, Conservation and Recycling., 132, 28–36.

    Article  Google Scholar 

  • Stainless Steel Council of China Special Steel Enterprises Association. (2022). China Stainless Steel Statistics in 2000–2018. Retrieved May 20, 2022, from http://www.cssc.org.cn/

  • Sun, X., Hao, H., Liu, Z. W., & Zhao, F. Q. (2020). Insights into the global flow pattern of manganese. Resources Policy, 65, 101578.

    Article  Google Scholar 

  • Tang, B. J., Wu, X. F., & Zhang, X. (2013). Modeling the CO2 emissions and energy saved from new energy vehicles based on the logistic-curve. Energy Policy, 57, 30–35.

    Article  Google Scholar 

  • Tang, L., Yu, L., Wang, S., Jianping, L., & Wang, S. Y. (2012). A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Applied Energy, 93, 432–443.

    Article  Google Scholar 

  • The World Bank (WB). (2021). World Bank Open Data. Retrieved December 30, 2021, from https://data.worldbank.org/

  • Torres, M. E., Colominas, M. A., Schlotthauer, G., & Flandrin, P. (2011). A complete ensemble empirical mode decomposition with adaptive noise. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4144–4147). http://refhub.elsevier.com/S0016-7061(17)32103-1/rf0515

  • Tsoularis, A., & Wallace, J. (2002). Analysis of logistic growth models. Mathematical Biosciences, 179, 21–55.

    Article  Google Scholar 

  • Tyler, J. M. (1995). Automotive applications for chromium. Metal Finishing, 93(10), 11–14.

    Article  Google Scholar 

  • UN Comtrade, (2021). UN Comtrade Database. Retrieved December 30, 2021, from https://comtrade.un.org/

  • United Nations. (2021). World population prospects. Retrieved December 30, 2021, from https://population.un.org/wpp/DataQuery/

  • United Nations Framework Convention on Climate Change Adoption of the Paris Agreement. (2015). Retrieved November 10, 2022, from https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

  • U.S. Geological Survey (USGS). (2021). Chromium statistics and information. Retrieved December 30, 2021, from https://minerals.usgs.gov/minerals/pubs/commodity

  • U.S. Geological Survey (USGS), Department of Interior. (2021). 2021 draft list of critical minerals. Retrieved December 30, 2021, from https://www.federalregister.gov/documents/2021/11/09/2021-24488/2021-draft-list-of-critical-minerals

  • Wang, A. J., & Gao, X. R. (2020). China’s energy and important mineral resources demand perspective. Bulletin of Chinese Academy of Sciences, 35, 338–344. in Chinese.

    Google Scholar 

  • Wang, A. J., Wang, G. S., Chen, Q. S., & Yu, W. J. (2010). The mineral resources demand theory and the prediction model. Acta Geoscientica Sinica, 31(2), 137–147. in Chinese.

    Google Scholar 

  • Wang, A. J., Wang, G. S., Chen, Q. S., Yu, W. J., Yan, K., & Yang, H. B. (2015). S-curve model of relationship between energy consumption and economic development. Natural Resources Research, 24, 53–64.

    Article  Google Scholar 

  • Wang, A. J. (2021). Recognition of the growth rule of energy and mineral resources consumption. China Mining Magazine, 7, 1–7. in Chinese.

    Google Scholar 

  • Watari, T., Nansai, K., & Nakajima, K. (2020). Review of critical metal dynamics to 2050 for 48 elements. Resources, Conservation and Recycling, 155, 104669.

    Article  Google Scholar 

  • Watari, T., Nansai, K., & Nakajima, K. (2021). Major metals demand, supply, and environmental impacts to 2100: A critical review. Resources, Conservation and Recycling, 164, 105107.

    Article  Google Scholar 

  • Wei, Y. M., Chen, K. Y., Kang, J. N., Chen, W. M., Wang, X. Y., & Zhang, X. Y. (2022). Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering, 14, 52–63.

    Article  Google Scholar 

  • Weng, Y., Li, Z., Sheng, Z., & Qi, T. (2015). Research on China’s steel demand using combined forecast. International Journal of U & E Service Science & Technology, 8(1), 189–200.

    Article  Google Scholar 

  • World Bureau of Metal Statistics (WBMS), (2021). Metals Database Service. Retrieved November 10, 2021 from https://world-bureau.co.uk/publications-services/metals-database/

  • Word Steel Association (WSA). (2022). Steel Statistics. Retrieved May 30, 2022, from https://worldsteel.org/steel-topics/statistics/

  • Wu, Q., Zhang, Z. Z., Pan, Z. S., Zhang, Z. N., & Xu, H. Y. (2021). Forecast of China’s vanadium resource demand from 2020 to 2035. China Mining Magazine, 30(5), 48–56. in Chinese.

    Google Scholar 

  • Wu, Z. H., & Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41.

    Article  Google Scholar 

  • Xuan, Y. N., & Yue, Q. (2016). Forecast of steel demand and the availability of depreciated steel scrap in China. Resources, Conservation and Recycling, 109, 1–12.

    Article  Google Scholar 

  • Yan, T. T., Wang, X. Q., Liu, D. S., Chi, Q. H., Zhou, J., Xu, S. F., Zhang, B. M., Nie, L. S., & Wang, W. (2021). Continental-scale spatial distribution of Chromium (Cr) in China and its relationship with ultramafic-mafic rocks and ophiolitic chromite deposit. Applied Geochemistry, 126, 104896.

    Article  Google Scholar 

  • Yu, L., Wang, S. Y., & Lai, K. K. (2008). Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics, 30, 2623–2635.

    Article  Google Scholar 

  • Zhang, X., Lai, K. K., & Wang, S. Y. (2008). A new approach for crude oil price analysis based on Empirical Mode Decomposition. Energy Economics, 30(3), 905–918.

    Article  Google Scholar 

  • Zhang, Z., Hu, G. W., Mu, X. Z., & Kong, L. (2022). From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. Journal of Environmental Management, 332, 116087.

    Article  Google Scholar 

  • Zhang, Z. Z., Jiang, G. Y., Wang, X. W., & Zhang, J. F. (2016). Development and utilization of the world’s and China’s bulk mineral resources and their supply and demand situation in the next twenty years. Acta Geologica Sinica, 90, 1370–1417.

    Article  Google Scholar 

  • Zhang, Z. N., Zhang, Z. Z., Pan, Z. S., Wu, Q., & Xu, H. Y. (2019). Analysis of China’s supply safety by global chromium ore resources countries. China Mining Magazine, 28(10), 69–76. in Chinese.

    Google Scholar 

Download references

Acknowledgments

This research is supported by grants from the geological surveying projects of China Geological Survey (Grant No. DD20190606) and Qinghai Salt Lake Industry Co., Ltd (Grant No. HE2221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaozhi Zhang.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3089 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Zhang, Z. & Che, D. Exploring Chromium Ore Consumption: New Perspectives from Hybrid CEEMDAN–S-Curve Modeling. Nat Resour Res 32, 929–953 (2023). https://doi.org/10.1007/s11053-023-10176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10176-6

Keywords

Navigation