Skip to main content
Log in

Combining Automated Mineralogy with X-ray Computed Tomography for Internal Characterization of Ore Samples at the Microscopic Scale

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Advanced chemical and mineralogical techniques are necessary to further our understanding of ore deposits and their genesis. Using X-ray micro-computed tomography (µCT) and an automated mineralogy (AM) system based on scanning electron microscopy with an energy-dispersive X-ray spectrometer (SEM–EDX), we investigated the internal mineralogy of Sn–Nb–Ta pegmatites. This paper presents a comprehensive methodology to quantify and visualize the mineral relationships of ore samples in three-dimensional space at the microscopic scale. A list of all possible minerals present, a so-called mineral library, was deduced with a SEM-based AM system and served as the ground truth for the interpretation of µCT data. A reconstructed attenuation coefficient (µrec) was calculated for mineral phases that have been identified and provided a most correct guidance to differentiate between minerals for a given experimental µCT setup. Despite some limitation in sample size and mineral identification, these complementary techniques enabled the differentiation of a Fe–Li mica from biotite based on the chemical attribution of lithium to µrec. Using statistical descriptors, we quantified the general orientation of individual mineral phases and their spatial correlation to comply with the needs of processing large datasets at a low computational expense. Applying this comprehensive methodology to a case study demonstrates the possibilities of combining a SEM-based AM system with µCT analysis to investigate ore samples at the microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Availability of Data and Materials

The datasets and code generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ali, S. H., Giurco, D., Arndt, N., Nickless, E., Brown, G., Demetriades, A., Durrheim, R., Enriquez, M. A., Kinnaird, J., Littleboy, A., Meinert, L. D., Oberhänsli, R., Salem, J., Schodde, R., Schneider, G., Vidal, O., & Yakovleva, N. (2017). Mineral supply for sustainable development requires resource governance. Nature, 543, 367–372.

    Google Scholar 

  • Anthony, J. W., Bideaux, R. A., Bladh, K. W., & Nichols M. C. (eds.), (2001). Handbook of mineralogy. Mineralogical Society of America. http://www.handbookofmineralogy.org/

  • Arganda-Carreras, I. (2018). Weka Segmentation tiling script. Scientific Community Image Forum. https://forum.image.sc/t/trainable-wekaerror-large-images/10929

  • Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., & Sebastian Sueng, H. (2017). Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics, 33(15), 2424–2426.

    Google Scholar 

  • Artioli, G. (2018). X-ray diffraction, studies of inorganic compounds and minerals. Encyclopedia of Spectroscopy and Spectrometry, 3, 676–683.

    Google Scholar 

  • Bam, L. C., Miller, J. A., & Becker, M. (2020). A mineral X-ray linear attenuation coefficient tool (MXLAC) to assess mineralogical differentiation for X-ray computed tomography scanning. Minerals, 10, 441.

    Google Scholar 

  • Becker, M., Jardine, M. A., Miller, J. A., & Harris, M. (2016). X-ray computed tomography—A geometallurgical tool for 3D textural analysis of drill core? In S. Dominy & L. O’Connor (Eds.), The third AusIMM international geometallurgy conference 2016 (pp. 231–240). AusIMM.

    Google Scholar 

  • Callow, B., Falcon-Suarez, I., Moreno-Marin, H., Bull, J. M., & Ahmed, S. (2020). Optimal X-ray micro-CT image based methods for porosity and permeability quantification in heterogeneous sandstones. Geophysical Journal International, 223(2), 1210–1229.

    Google Scholar 

  • Chantler, C. T., Olsen, K., Dragoset, R. A., Chang, J., Kishore, A. R., Kotochigova, S. A., & Zucker, D. S. (2005). X-ray form factor, attenuation and scattering tables (version 2.1). National Institute of Standards and Technology.

    Google Scholar 

  • Cnudde, V., & Boone, M. N. (2013). High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, 1–17.

    Google Scholar 

  • De Boever, W., Derluyn, H., Van Loo, D., Van Hoorebeke, L., & Cnudde, V. (2015). Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone. Micron, 74, 15–21.

    Google Scholar 

  • De Witte, Y. (2010). Improved and Practically Feasible Reconstruction Methods for High Resolution X-ray Tomography. (Doctoral dissertation, Ghent University, Ghent). Retrieved from http://lib.ugent.be/catalog/rug01:001404410

  • Dewaele, S., Henjes-Kunst, F., Melcher, F., Sitnikova, M., Burgess, R., Gerdes, A., Fernandez, M. A., De Clercq, F., Muchez, P., & Lehmann, B. (2011). Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa). Journal of African Earth Sciences, 61(1), 10–26.

    Google Scholar 

  • Dhaene, J., Pauwels, E., De Schryver, T., De Muynck, A., Dierick, M., & Van Hoorebeke, L. (2015). A realistic projection simulator for laboratory based X-ray micro-CT. Nuclear Instruments and Methods in Physics Research B, 342, 170–178.

    Google Scholar 

  • Dill, H. G. (2010). The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, 100, 1–420.

    Google Scholar 

  • Evsevleev, S., Paciornik, S., & Bruno, G. (2020). Advanced deep learning-based 3D microstructures characterization of multiphase metal matrix composites. Advanced Engineering Materials, 22, 1901197.

    Google Scholar 

  • Furat, O., Wang, M., Neumann, M., Petrich, L., Weber, M., Krill, C. E., III., & Schmidt, V. (2019). Machine learning techniques for the segmentation of tomographic image data of functional materials. Frontiers in Materials, 6, 145.

    Google Scholar 

  • Gessner, K., Blenkinsop, T., & Sorjonen-Ward, P. (2018). Characterization of ore-forming systems—Advances and challenges. In K. Gessner, T. G. Blenkinsop, & P. Sorjonen-Ward (Eds.), Geological Society, London, Special Publications (Vol. 453, pp. 1–6). Geological Society of London.

    Google Scholar 

  • Gibson, B., Nwaila, G., & Petersen, J. (2021). Characterization of a coarse synthetic silver ore as a model ore material for heap leaching research. Minerals Engineering, 174, 107253.

    Google Scholar 

  • Godel, B. (2013). High-resolution X-ray computed tomography and its application to ore deposits: From data acquisition to quantitative three-dimensional measurements with case studies from Ni–Cu-PGE deposits. Economic Geology, 108(8), 2005–2019.

    Google Scholar 

  • Graham, S. D. (2017). Automated mineralogy—The past, present and future. In F. Kongoli, D. Bradshaw, K. Waters, J. Starkey, & A. C. Silva (Eds.), Sustainable Industrial Processing Summit SIPS 2017 (Vol. 4, pp. 96–115). Flogen Star Outreach.

    Google Scholar 

  • Gu, L., Wang, N., Tang, X., & Changela, H. G. (2020). Application of FIB-SEM techniques for the advanced characterization of earth and planetary materials. Scanning, 2020, 8406917.

    Google Scholar 

  • Guntoro, P. I., Ghorbani, Y., Koch, P.-H., & Rosenkranz, J. (2019a). X-ray microcomputed tomography (μCT) for mineral characterization: A review of data analysis methods. Minerals, 9(3), 183.

    Google Scholar 

  • Guntoro, P. I., Tiu, G., Ghorbani, Y., Lund, C., & Rosenkranz, J. (2019b). Application of machine learning techniques in mineral phase segmentation for X-ray microcomputed tomography (µCT) data. Minerals Engineering, 142, 105882.

    Google Scholar 

  • Hayes, S. M., & McCullough, E. A. (2018). Critical minerals: A review of elemental trends in comprehensive criticality studies. Resources Policy, 59, 192–199.

    Google Scholar 

  • Holzner, C., Lavery, L., Bale, H., Merkle, A., McDonald, S., Withers, P., Zhang, Y., Juul Jensen, D., Kimura, M., Lyckegaard, A., Reischig, P., & Lauridsen, E. M. (2016). Diffraction contrast tomography in the laboratory applications and future directions. Microscopy Today, 24(4), 34–43.

    Google Scholar 

  • Hrstka, T., Gottlieb, P., Skála, R., Breiter, K., & Motl, D. (2018). Automated mineralogy and petrology—Applications of TESCAN Integrated Mineral Analyzer (TIMA). Journal of Geosciences, 63, 47–63.

    Google Scholar 

  • Hulsbosch, N., Hertogen, J., Dewaele, S., Andre, L., & Muchez, P. (2013). Petrographic and mineralogical characterisation of fractionated pegmatites culminating in the Nb–Ta–Sn pegmatites of the Gatumba area (western Rwanda). Geologica Belgica, 16(1–2), 105–117.

    Google Scholar 

  • Hulsbosch, N., & Muchez, P. (2020). Tracing fluid saturation during pegmatite differentiation by studying the fluid inclusion evolution and multiphase cassiterite mineralization of the Gatumba pegmatite dyke system (NW Rwanda). Lithos, 354–355, 105285.

    Google Scholar 

  • Jardine, M. A., Miller, J. A., & Becker, M. (2018). Coupled X-ray computed tomography and grey level co-occurrence matrices as a method for quantification of mineralogy and texture in 3D. Computers and Geosciences, 111, 105–117.

    Google Scholar 

  • Kazhdan, M., Lillaney, K., Roncal, W., Bock, D., Vogelstein, J., & Burns, R. (2015). Gradient-domain fusion for color correction in large EM image stacks.

  • Ketcham, R. A., & Mote, A. S. (2019). Accurate measurement of small features in X-ray CT data volumes, demonstrated using gold grains. Journal of Geophysical Research: Solid Earth, 124, 3508–3529.

    Google Scholar 

  • Keulen, N., Malkki, S. N., & Graham, S. (2020). Automated quantitative mineralogy applied to metamorphic rocks. Minerals, 10, 47.

    Google Scholar 

  • Kyle, J. R., & Ketcham, R. A. (2015). Application of high resolution X-ray computed tomography to mineral deposit origin, evaluation, and processing. Ore Geology Reviews, 65(4), 821–839.

    Google Scholar 

  • Laforce, B., Vermeulen, B., Garrevoet, J., Vekemans, B., Van Hoorebeke, L., Janssen, C., & Vincze, L. (2016). Laboratory scale X-ray fluorescence tomography: Instrument characterization and application in earth and environmental science. Analytical Chemistry, 88(6), 3386–3391.

    Google Scholar 

  • Lehmann, B., Halder, S., Ruzindana Munana, J., Ngizimana, J., & Biryabarema, M. (2014). The geochemical signature of rare-metal pegmatites in Central Africa: Magmatic rocks in the Gatumba tin-tantalum mining district, Rwanda. Journal of Geochemical Exploration, 144, 528–538.

    Google Scholar 

  • Lehmann, B., Melcher, F., Sitnikova, M. A., & Ruzindana, M. J. (2008). The Gatumba rare-metal pegmatites: Chemical signature and environmental impact. Études Rwandaises, 16, 25–40.

    Google Scholar 

  • Lobos, R., Silva, J. F., Ortiz, J. M., Díaz, G., & Egaña, A. (2016). Analysis and classification of natural rock textures based on new transform-based features. Mathematical Geosciences, 48(7), 835–870.

    Google Scholar 

  • Masschaele, B., Dierick, M., Van Loo, D., Boone, M. N., Brabant, L., Pauwels, E., Cnudde, V., & Van Hoorebeke, L. (2013). HECTOR: A 240 kV micro-CT setup optimized for research. Journal of Physics: Conference Series, 463, 012012.

    Google Scholar 

  • Melcher, F., Graupner, T., Gäbler, H.-E., Sitnikova, M., Henjes-Kunst, F., Oberthür, T., Gerdes, A., & Dewaele, S. (2015). Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geology Reviews, 64, 667–719.

    Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1), 62–66.

    Google Scholar 

  • Pearce, M. A., Godel, B. M., Fisher, L. A., Schoneveld, L. E., Cleverley, J. S., Oliver, N. H. S., & Nugus, M. (2018). Microscale data to macroscale processes: A review of microcharacterization applied to mineral systems. In K. Gessner, T. G. Blenkinsop, & P. Sorjonen-Ward (Eds.), Geological Society, London, Special Publications (Vol. 453, pp. 7–39). Geological Society of London.

    Google Scholar 

  • Reed, S. J. B. (2005). Electron microprobe analysis and scanning electron microscopy in geology (2nd ed.). Cambridge University Press.

    Google Scholar 

  • Reuter, M. A., van Schaik, A., Gutzmer, J., Bartie, N., & Abadías-Llamas, A. (2019). Challenges of the circular economy: A material, metallurgical, and product design perspective. Annual Review of Materials Research, 49, 253–274.

    Google Scholar 

  • Reyes, F., Lin, Q., Udoudo, O., Dodds, C., Lee, P. D., & Neethling, S. (2017). Calibrated X-ray microtomography for mineral ore quantification. Minerals Engineering, 110, 122–130.

    Google Scholar 

  • Schindelin, J., Arganda Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676–682.

    Google Scholar 

  • Shannon, J. R., Walker, B. M., Carten, R. B., & Geraghty, E. P. (1982). Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology, 10(6), 293–297.

    Google Scholar 

  • Strzelecki, P. J., Świerczewska, A., Kopczewska, K., Fheed, A., Tarasiuk, J., & Wroński, S. (2021). Decoding rocks: An assessment of geomaterial microstructure using X-ray microtomography, image analysis and multivariate statistics. Materials, 14, 3266.

    Google Scholar 

  • Vlassenbroeck, J., Dierick, M., Masschaele, B., Cnudde, V., Van Hoorebeke, L., & Jacobs, P. (2007). Software tools for quantification of X-ray microtomography at the UGCT. Nuclear Instruments and Methods in Physics Research A, 580(1), 442–445.

    Google Scholar 

  • Wang, Y., & Miller, J. D. (2020). Current developments and applications of micro-CT for the 3D analysis of multiphase mineral systems in geometallurgy. Earth-Science Reviews, 211, 103406.

    Google Scholar 

  • Warlo, M., Bark, G., Wanhainen, C., Butcher, A. R., Forsberg, F., Lycksam, H., & Kuva, J. (2021). Multi-scale X-ray computed tomography analysis to aid automated mineralogy in ore geology research. Frontiers in Earth Science, 9, 789372.

    Google Scholar 

  • Warlo, M., Wanhainen, C., Bark, G., Butcher, A. R., McElroy, I., Brising, D., & Rollinson, G. K. (2019). Automated quantitative mineralogy optimized for simultaneous detection of (precious/critical) rare metals and base metals in a production-focused environment. Minerals, 9, 440.

    Google Scholar 

  • Wellmer, F.-W., Buchholz, P., Gutzmer, J., Hagelüken, C., Herzig, P., Littke, R., & Thauer, R. K. (2019). Raw materials for future energy supply. Springer.

    Google Scholar 

Download references

Acknowledgments

This work is funded by the European Electron and X-ray Imaging Infrastructure (EXCITE), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101005611. SEM instrumentation has received funding from Research Foundation – Flanders (FWO) for medium-scale research infrastructure under grant agreement number I013118N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Buyse.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyse, F., Dewaele, S., Boone, M.N. et al. Combining Automated Mineralogy with X-ray Computed Tomography for Internal Characterization of Ore Samples at the Microscopic Scale. Nat Resour Res 32, 461–478 (2023). https://doi.org/10.1007/s11053-023-10161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10161-z

Keywords

Navigation