Skip to main content

Advertisement

Log in

Identification of Multi-Element Geochemical Anomalies for Cu–Polymetallic Deposits Through Staged Factor Analysis, Improved Fractal Density and Expected Value Function

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The success of exploration geochemistry requires identification of multi-element geochemical signatures. It has been revealed that Zhongdian island arc zone is an important area with supersized or large Cu–polymetallic deposits. In this regard, we proposed a hybrid method to identify multi-element geochemical anomaly for Cu–polymetallic deposits based on staged factor analysis, improved fractal density and expected value function. In this study, two factors including Cu–Zn and Mo–Pb associations were recognized after four stages of factor analysis of stream sediment geochemical data from Zhongdian area, Yunnan, China. Then, an improved fractal density model was developed to reveal the geochemical distribution patterns of these factors by introducing the parameter Pc (a form of singularity index) based on "general fractal topography". The results demonstrate that the proposed model enhanced the anomaly-background structure of Cu geochemical distribution pattern, and effectively characterized the anisotropic scale-invariance of local singularities. Furthermore, the assessment of Cu anomaly uncertainty showed there were about 33% of the Cu occurrences in the low probability areas, indicating these areas based on the Cu anomaly remain uncertain for Cu–polymetallic deposits. Thus, to generate a stronger anomalous signature for Cu–polymetallic potential mapping, the expected value function was utilized for the integration of the two different geochemical signatures, and the fuzzy algebraic sum operator was used also for comparison purpose. The contrasting results demonstrated that the proposed method can increase the intensity of favorable anomalies, reduce the uncertainty and optimize the prospecting areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Availability of data and material

The underlying data are confidential and therefore cannot be made publicly accessible.

Code availability

Some codes generated or used in the study are proprietary or confidential and may only be provided with restrictions.

References

  • Aitchison, J. (1986). The statistical analysis of compositional data. Chapman and Hall.

    Book  Google Scholar 

  • Aliyari, F., Afzal, P., Lotfi, M., Shokri, S., & Anhar, H. F. (2020). Delineation of geochemical haloes using the developed zonality index model by multivariate and fractal analysis in the Cu-Mo porphyry deposits. Applied Geochemistry, 121, 104694.

    Article  Google Scholar 

  • An, P., Moon, W. M., & Rencz, A. (1991). Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Canadian Journal of Exploration Geophysics, 27(1), 1–11.

    Google Scholar 

  • Bian, P. (2018). The metallogenic and metallogenic regularity of the Yidun island arc belt. Master dissertation, Chengdu University of Technology (In Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-10616-1018255282.htm

  • Bonham-Carter, G. F. (1994). Geographic Information systems for geoscientists: Modelling with GIS. Pergamon.

    Google Scholar 

  • Bölviken, B., Stokke, P. R., Feder, J., & Jössang, T. (1992). The fractal nature of geochemical landscapes. Journal of Geochemical Exploration, 43(2), 91–109.

    Article  Google Scholar 

  • Cao, L., & Cheng, Q. (2012). Quantification of anisotropic scale invariance of geochemical anomalies associated with Sn-Cu mineralization in Gejiu, Yunan Province, China. Journal of Geochemical Exploration, 122(1), 47–54.

    Article  Google Scholar 

  • Cao, X., Fan, Y., Zhang, S., Dong, T., & Wang, J. (2014). The metallogenetic series and prospecting potentiality of Gezan Cu multimetallic deposit concentration area in Zhongdian, Yunnan. Yunnan Geology, 33(003), 287–294. (In Chinese with English abstract).

    Google Scholar 

  • Carranza, E.J.M. (2008). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11. Elsevier, Amsterdam.

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Bonham-Carter, G. (1996). A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56(3), 183–195.

    Article  Google Scholar 

  • Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation. Natural Resources Research, 9(1), 43–52. https://doi.org/10.1023/A:1010109829861

    Article  Google Scholar 

  • Cheng, Q. (2008). Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40(5), 503–532.

    Article  Google Scholar 

  • Cheng, Q., & Agterberg, F. P. (2009). Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, 35(2), 234–244.

    Article  Google Scholar 

  • Cheng, Q. (2016). Fractal density and singularity analysis of heat flow over ocean ridges. Scientific Reports, 6, 19167.

    Article  Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3–4), 294–313.

    Article  Google Scholar 

  • Deng, J., Wang, Q., Li, G., Li, C., & Wang, C. (2014). Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2), 419–437.

    Article  Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., Reimann, C., & Garrett, R. (2009). Robust factor analysis for compositional data. Computers & Geosciences, 35(9), 1854–1861.

    Article  Google Scholar 

  • Gong, Q., Deng, J., Wang, C., Wang, Z., & Zhou, L. (2013). Element behaviors due to rock weathering and its implication to geochemical anomaly recognition: A case study on Linglong biotite granite in Jiaodong peninsula, China. Journal of Geochemical Exploration, 128, 14–24.

    Article  Google Scholar 

  • Goovaerts, P. (2001). Geostatistical modelling of uncertainty in soil science. Geoderma, 103(1–2), 3–26.

    Article  Google Scholar 

  • Hosseini, S. T., Asghari, O., & Haroni, H. A. (2020). Multivariate anomaly modeling of primary geochemical halos by u-spatial statistic algorithm development: a case study from the sari gunay epithermal gold deposit, Iran. Ore Geology Reviews, 127(1–2), 103845.

    Article  Google Scholar 

  • Hou, Z., & Mo, X. (1991). The evolution of Yidun Island arc and implications in the exploration of Kuroko-type volcanogenic massive sulphide deposits in Sanjiang area, China. Earth Science, 02, 153–948. (In Chinese with English abstract).

    Google Scholar 

  • Iwamori, H., Yoshida, K., Nakamura, H., Kuwatani, T., Hamada, M., Haraguchi, S., & Ueki, K. (2017). Classification of geochemical data based on multivariate statistical analyses: Complementary roles of cluster, principal component, and independent component analyses. Geochemistry, Geophysics, Geosystems, 18(3), 994–1012.

    Article  Google Scholar 

  • Jin, Y., Liu, X., Song, H., Zheng, J., & Pan, J. (2019). General fractal topography: An open mathematical framework to characterize and model mono-scale-invariances. Nonlinear Dynamics, 96(4), 2413–2436.

    Article  Google Scholar 

  • Jin, Y., Wu, Y., Li, H., Zhao, M., & Pan, J. (2017). Definition of fractal topography to essential understanding of scale-invariance. Scientific Reports, 7, 46672.

    Article  Google Scholar 

  • Korobova, E. M., & Romanov, S. L. (2009). A Chernobyl 137Cs contamination study as an example for the spatial structure of geochemical fields and modeling of the geochemical field structure. Chemometrics & Intelligent Laboratory Systems, 99(1), 1–8.

    Article  Google Scholar 

  • Kai, B., Pma, C., Td, A., Cs, D., Mh, D., & Jg, A. (2019). Multivariate geochemical classification of chromitite seams in the bushveld complex, South Africa. Applied Geochemistry, 103, 106–117.

    Article  Google Scholar 

  • Leng, C., Zhang, X., Wang, S., Qin, C., & Gou, T. (2007). Geochemical characteristics of porphyry copper deposits in the Zhongdian area, Yunnan as exemplified by the Xuejiping and Pulang copper deposits. Acta Mineralogica Sinica, 27(3/4), 414–422. (In Chinese with English abstract).

    Google Scholar 

  • Li, W., Zeng, P., Hou, Z., & White, N. C. (2011). The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, Southwest China. Economic Geology, 2011, 106(1):79–92.

  • Liu, Y., Cheng, Q., Zhou, K., Xia, Q., & Wang, X. (2016). Multivariate analysis for geochemical process identification using stream sediment geochemical data: A perspective from compositional data. Geochemical Journal, 50(4), 293–314.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., Carranza, E. J. M., & Zhou, K. (2019a). Assessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysis. Natural Resources Research, 28(1), 199–212.

    Article  Google Scholar 

  • Liu, Y., Cheng, Q., & Zhou, K. (2019b). New insights into element distribution patterns in geochemistry: A perspective from fractal density. Natural Resources Research, 28(1), 5–29.

    Article  Google Scholar 

  • Liu, Y., Zhou, K., & Cheng, Q. (2017). A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Computers & Geosciences, 105, 139–147.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. American Journal of Physics, 51(3), 286. https://doi.org/10.1119/1.13295

    Article  Google Scholar 

  • Mckinley, J., & Lloyd, C. D. (2011). Multivariate geochemical data analysis in physical geography. In book: Compositional Data Analysis: Theory and Applications (pp.290 - 301), Wiley. https://doi.org/10.1002/9781119976462.ch21

  • Mohammadpour, M., Bahroudi, A., Abedi, M., Rahimipour, G., & Khalifani, F. M. (2019). Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging. Journal of Geochemical Exploration, 200, 13–26.

    Article  Google Scholar 

  • Meigooni, M. S., Lotfi, M., Afzal, P., Nezafati, N., & Razi, M. K. (2021). Application of multivariate geostatistical simulation and fractal analysis for detection of rare-earth element geochemical anomalies in the Esfordi phosphate mine, Central Iran. Geochemistry: Exploration, Environment, Analysis. https://doi.org/10.1144/geochem2020-035

    Article  Google Scholar 

  • Owusu, E. A., Dzigbodiadjimah, K., & Mathesis, G. (2003). Integration of spatial and non-spatial information for the interpretation of soil geochemical patterns. Journal of Science and Technology, 23(2), 53–62.

    Google Scholar 

  • Panahi, A., & Cheng, Q. (2004). Multifractality as a measure of spatial distribution of geochemical patterns. Mathematical Geology, 36(7), 827–846.

    Article  Google Scholar 

  • Ramezanali, A. K., Feizi, F., Jafarirad, A., & Lotfi, M. (2020). Geochemical anomaly and mineral prospectivity mapping for vein-type copper mineralization, Kuhsiah-e-Urmak Area, Iran: Application of sequential gaussian simulation and multivariate regression analysis. Natural Resources Research, 29(1), 41–70.

    Article  Google Scholar 

  • Shahbazi, S., Ghaderi, M., & Afzal, P. (2021). Prognosis of gold mineralization phases by multifractal modeling in the zehabad epithermal deposit, NW Iran. Iranian Journal of Earth Sciences, 13(1), 31–40.

    Google Scholar 

  • Saadati, S., Fahiminia, M., & Asghari, O. (2021). Univariate geostatistical outlier detection methods based on variogram pairs, case study: Sarigunay gold deposit, Iran. The 2nd International Electronic Conference on Mineral Science.

  • Saadati, H., Afzal, P., Torshizian, H., & Solgi A. (2020). Geochemical exploration for lithium in NE Iran using the geochemical mapping prospectivity index, staged factor analysis, and a fractal model. Geochemistry: Exploration, Environment, Analysis, 20 (4), 461–472.

  • Tripathi, V. S. (1979). Factor analysis in geochemical exploration. Journal of Geochemical Exploration, 11(3), 263–275.

    Article  Google Scholar 

  • Turcotte, D. L. (1997). Fractals and Choas in Geology and Geophysics. Cambridge University Press.

    Book  Google Scholar 

  • Turcotte, D. L. (2002). Fractals in petrology. Lithos, 65(3), 261–271.

    Article  Google Scholar 

  • Turcotte, D. L. (2010). Fractals, chaos, self-organized criticality and tectonics. Terra Nova, 4(1), 4–12.

    Article  Google Scholar 

  • Velasco, F., & Verma, S. P. (1998). Importance of skewness and kurtosis statistical tests for outlier detection and elimination in evaluation of geochemical reference materials. Mathematical Geology, 30(1), 109–128.

    Article  Google Scholar 

  • Wang, X., Xia, Q., Li, T., Leng, S., Kang, L., Chen, Z., & Lianrong, W. (2019). Application of fractal models to delineate mineralized zones in the Pulang porphyry copper deposit, Yunnan, southwestern China. Nonlinear Processes in Geophysics, 26(3), 267–282.

    Article  Google Scholar 

  • Wang, X., Zhang, Q., & Zhou, G. (2007). National-scale geochemical mapping projects in China. Geostandards and Geoanalytical Research, 31(4), 311–320.

    Article  Google Scholar 

  • Xiao, F., Chen, J., Agterberg, F., & Wang, C. (2014). Element behavior analysis and its implications for geochemical anomaly identification: A case study for porphyry Cu–Mo deposits in Eastern Tianshan, China. Journal of Geochemical Exploration, 145, 1–11.

    Article  Google Scholar 

  • Xie, S., & Bao, Z. (2004). Fractal and Multifractal Properties of Geochemical Fields. Mathematical Geology, 36(7), 847–864.

    Article  Google Scholar 

  • Xie, X., Mu, X., & Ren, T. (1997). Geological mapping in China. Journal of Geochemical Exploration, 60, 99–113.

    Article  Google Scholar 

  • Yang, Y. (2002). Collision orogenic process and magmatic metallogenic system in Zhongdian Arc. Acta Geosicientia Sinica (In Chinese with English Abstract). https://doi.org/10.3321/j.issn:1006-3021.2002.01.004

    Article  Google Scholar 

  • Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry Exploration Environment Analysis, 14(1), 45–58. https://doi.org/10.1144/geochem2012-144

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. (2015). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Article  Google Scholar 

  • Yu, C. (1994). Exploring complexity of geochemical systems. Earth Science-Journal of China University of Geosciences, 019(003), 283–286. (In Chinese with English abstract).

    Google Scholar 

  • Zeng, P., Li, W., Wang, H., & Li, H. (2006). The Indosinian Pulang superlarge porphyry copper deposit in Yunnan, China: Petrology and chronology. Acta Petrologica Sinica, 22(04), 989–1000. (In Chinese with English abstract).

    Google Scholar 

  • Zhang, Z., Mao, H., & Cheng, Q. (2001). Fractal Geometry of Element Distribution on Mineral Surfaces. Mathematical Geology, 33(2), 217–228.

    Article  Google Scholar 

  • Zhao, J., Zuo, R., & Chen, S. (2017). Identification and mapping of lithogeochemical signatures using staged factor analysis and fractal/multifractal models. Geochemistry Exploration Environment Analysis, 17(3), 239–251.

    Article  Google Scholar 

  • Zhao, M., Jin, Y., Liu, X., Zheng, J., & Liu, S. (2020). Characterizing the complexity assembly of pore structure in a coal matrix: principle methodology and modeling application. Journal of Geophysical Research: Solid Earth, 125, e2020JB020110.

    Google Scholar 

  • Zhao, P., Chi, S., & Chen, Y. (1996). A theory investigation of geo-anomaly: A basis of metallogenic prognosis. Geological Journal of China Universities, 2(4), 361–373. (In Chinese with English abstract).

    Google Scholar 

  • Zhao, P. (1998). The main way of geo-anomaly location of ore body. Earth Science-Journal of China University of Geosciences, 23(2), 111–114. (In Chinese with English abstract).

    Google Scholar 

  • Zhao, P. (2002). “Three-Component” quantitative resource prediction and assessments: Theory and practice of digital mineral prospecting. Earth Science-Journal of China University of Geosciences, 27(5), 482–489. (In Chinese with English abstract).

    Google Scholar 

  • Zhao, Y., Shi, X., Yu, D., Wang, H., & Sun, W. (2005). Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. Chemosphere, 59(11), 1527–1535.

    Article  Google Scholar 

  • Zuo, R., Carranza, E., & Jian, W. (2016). Spatial analysis and visualization of exploration geochemical data. Earth-Science Reviews, 158, 9–18.

    Article  Google Scholar 

  • Zuo, R., Cheng, Q., Agterberg, F. P., & Xia, Q. (2009). Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 101(3), 225–235.

    Article  Google Scholar 

  • Zuo, R., Xia, Q., & Wang, H. (2013). Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied Geochemistry, 28, 202–211.

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the Editor and anonymous reviewers, whose valuable comments improved the manuscript. This research was jointly supported by the National Key RandD Program of China (Grant No. 2016YFC0600508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Xia, Q., Wu, L. et al. Identification of Multi-Element Geochemical Anomalies for Cu–Polymetallic Deposits Through Staged Factor Analysis, Improved Fractal Density and Expected Value Function. Nat Resour Res 31, 1867–1887 (2022). https://doi.org/10.1007/s11053-021-09957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09957-8

Keywords

Navigation