Skip to main content

Advertisement

Log in

Relative Permeability Modeling Using Extra Trees, ANFIS, and Hybrid LSSVM–CSA Methods

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Determination of the essential properties of petroleum reservoir rocks and parameters of fluid flow in the porous media is a challenging part of reservoir characterization. Among other reservoir rock and two-phase flow properties, the relative permeabilities of gas–oil and water–oil systems are required as critical inputs for reservoir simulation models. Generally, laboratory experiments are considered the best way to obtain accurate information on reservoir rock and flow properties. However, due to the high costs and lengthy procedures of laboratory analyses of reservoir rocks and due to other reasons such as unavailability of the required rock samples, particularly during the early stages of reservoir life, the use of other techniques to predict these properties is inevitable. In this study, three advanced machine learning methods were used to predict relative permeability of oil in the presence of water (krow), relative permeability of water (krw), relative permeability of oil in the presence of gas (krog), and relative permeability of gas (krg). These methods are adaptive network-based fuzzy inference system (ANFIS), the hybrid of least square support vector machine (LSSVM) with coupled simulated annealing (CSA), and extremely randomized trees, also known as extra trees (ET). We used two extensive sets of experimental data on relative permeabilities in the water–oil and gas–oil systems to develop models with good generalization and universality. The prediction accuracy and reliability of the developed models were evaluated using two standard statistical quality measures, i.e., root mean square deviation (RMSD) and the regression coefficient (R2). The results show that while all the developed models were capable of matching the experimental results with reasonable accuracies, the ET and hybrid LSSVM–CSA models provided better prediction performance and superior correlations between the measured and predicted values. Moreover, this study shed light on to what degree each rock-flow property is important in the estimation of water–oil and gas–oil relative permeabilities. In this regard, we applied feature reduction based on the ET feature importance rankings for developing new ET models to estimate water–oil relative permeabilities using only two input features, i.e., Sw and Swc, for prediction of krow, and Sw and wettability type for prediction of krw, instead of the seven input parameters used in development of the main models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Abernathy, B. F. (1964). Waterflood prediction methods compared to pilot performance in carbonate reservoirs. Journal of Petroleum Technology, 16(3), 276–282.

    Article  Google Scholar 

  • Adamopoulos, G. I., & Pappis, C. P. (1993). Some results on the resolution of fuzzy relation equations. Fuzzy Sets and Systems, 60(1), 83–88.

    Article  Google Scholar 

  • Ahmadi, M. A. (2015). Connectionist approach estimates gas–oil relative permeability in petroleum reservoirs: Application to reservoir simulation. Fuel, 140, 429–439.

    Article  Google Scholar 

  • Ahmadi, M.-A., Ahmadi, M.-R., Hosseini, S.-M., & Ebadi, M. (2014). Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence. Journal of Petroleum Science and Engineering, 123, 183–200.

    Article  Google Scholar 

  • Ahmadi, M.-A., Zendehboudi, S., Dusseault, M. B., & Chatzis, I. (2016). Evolving simple-to-use method to determine water–oil relative permeability in petroleum reservoirs. Petroleum, 2(1), 67–78.

    Article  Google Scholar 

  • Ahmed, T. (2010). Reservoir Engineering Handbook (4th ed.). Gulf Professional Publishing.

    Google Scholar 

  • Ali, J. K., McGauley, P. J., & Wilson, C. J. (1997). The effects of high-velocity flow and PVT changes near the wellbore on condensate well performance. San Antonio.

    Book  Google Scholar 

  • Amyx, J. W., Bass, D. M., & Whiting, R. L. (1960). Petroleum Reservoir Engineering: Physical properties. McGraw-Hill.

    Google Scholar 

  • Archer, J. S., & Wall, C. G. (1986). Petroleum engineering: Principles and practice (p. 1986). Graham and Trotman Publisher.

    Book  Google Scholar 

  • Archer, J. S., & Wong, S. W. (1973). Use of a reservoir simulator to interpret laboratory waterflood data. Society of Petroleum Engineers Journal, 13(6), 343–347.

    Article  Google Scholar 

  • Bail, P. T., & Marsden, S. S. (1956). Saturation Distribution in a Linear System during Oil Displacement. Los Angeles.

    Book  Google Scholar 

  • Baker, R. O., Yarranton, H. W., & Jensen, J. (2015). Practical reservoir engineering and characterization. Gulf Professional Publishing.

    Google Scholar 

  • Bakyani, A. E., et al. (2016). Prediction of CO2–oil molecular diffusion using adaptive neuro-fuzzy inference system and particle swarm optimization technique. Fuel, 181, 178–187.

    Article  Google Scholar 

  • Baldwin, J. L., Bateman, R. M. & Wheatley, C. L., (1990). Application of a neural network to the problem of mineral identification from well logs. The Log Analyst, 31(5).

  • Baldwin, J. L., Otte, D. N., & Whealtley, C. L. (1989). Computer emulation of human mental processes: Application of neural network simulators to problems in well log interpretation. Society of Petroleum Engineers.

    Google Scholar 

  • Bandyopadhyay, P., & Sharma, A. (2011). Development of a new semi analytical model for prediction of bubble point pressure of crude oils. Journal of Petroleum Science and Engineering, 78(3–4), 719–731.

    Article  Google Scholar 

  • Baptist, O. C., White, E. J. & Land, C. S., (1964). Laboratory Predictions Of Water Sensitivity Compared With Field Observations Of Well Damage - Patrick Draw, Wyoming. Casper, Wyoming

  • Batycky, J. P., McCaffery, F. G., Hodgins, P. K., & Fisher, D. B. (1981). Interpreting relative permeability and wettability from unsteady-state displacement measurements. Society of Petroleum Engineers Journal, 21(3), 296–308.

    Article  Google Scholar 

  • Bech, N., Olsen, D., & Nielsen, C. M. (2000). Determination of oil/water saturation functions of chalk core plugs from two-phase flow experiments. SPE Reservoir Evaluation and Engineering, 3(1), 50–59.

    Article  Google Scholar 

  • Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithm. Plenum Press.

    Book  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Clarendon Press.

    Google Scholar 

  • Boom, W., et al. (1996). On the use of model experiments for assessing improved gas-condensate mobility under near-wellbore flow conditions. Denver.

    Book  Google Scholar 

  • Braun, E. M., & Blackwell, R. J. (1981). A steady-state technique for measuring oil-water relative permeability curves at reservoir conditions. Society of Petroleum Engineers.

    Book  Google Scholar 

  • Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. (1984). Classification and Regression Trees (1st ed.). Chapman and Hall/CRC.

    Google Scholar 

  • Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Fort Collins.

    Google Scholar 

  • Brooks, R. H., & Corey, A. T. (1966). Properties of Porous Media Affecting Fluid Flow. Journal of the Irrigation and Drainage Division, 92(2), 61–90.

    Article  Google Scholar 

  • Burdine, N. T. (1953). Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology, 5(3), 71–78.

    Article  Google Scholar 

  • Cakmakcı, M., Ozkaya, B., & Yetilmezsoy, K. (2011). Artificial intelligence-based prediction models for environmental engineering. Neural Network World, 21(3), 461–472.

    Google Scholar 

  • Caudle, B. H., Slobod, R. L., & Brownscombe, E. R. (1951). Further developments in the laboratory determination of relative permeability. Journal of Petroleum Technology, 3(5), 145–150.

    Article  Google Scholar 

  • Chamkalani, A., Zendehboudi, S., Chamkalani, R., Lohi, A., Elkamel, A., & Chatzis, I. (2013). Utilization of support vector machine to calculate gas compressibility factor. Fluid Phase Equilibria, 358, 189–202.

    Article  Google Scholar 

  • Cherkassky, V., & Mulier, F. M. (2007). Learning from Data: Concepts, Theory, and Methods (2nd ed.). Wiley.

    Book  Google Scholar 

  • Chierici, G. L. (1984). Novel relations for drainage and imbibition relative permeabilities. Society of Petroleum Engineers Journal, 24(3), 275–276.

    Article  Google Scholar 

  • Chopra, S. & Michelena, R. J., (2011). Introduction to this special section: Reservoir characterization. The Leading Edge, 3(1).

  • Chu, C., & Tremble, A. E. (1975). Numerical simulation of steam displacement field performance applications. Journal of Petroleum Technology, 27(6), 765–776.

    Article  Google Scholar 

  • Chung, F.-L., & Lee, T. (1997). A new look at solving a system of fuzzy relational equations. Fuzzy Sets and Systems, 88(3), 343–353.

    Article  Google Scholar 

  • Clayton, C. A. et al. (1998) Ubit Field Rejuvenation: A Case History of Reservoir Management of a Giant Oil Field, Offshore Nigeria. New Orleans, Louisiana,

  • Colpitts, G. P., & Hunter, D. E. (1964). Laboratory displacement of oil by water under simulated reservoir conditions. Journal of Canadian Petroleum Technology, 3(2), 66–70.

    Article  Google Scholar 

  • Corey, A. T., (1954). The interrelation between gas and oil relative permeabilities. Producers Monthly, 38–41.

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Article  Google Scholar 

  • Craig, F. F. J., (1993). The Reservoir Engineering Aspects of Waterflooding. Society of Petroleum Engineers.

  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods (1st ed.). Cambridge University Press.

    Book  Google Scholar 

  • Curilem, M., Acuna, G., Cubillos, F., & Vyhmeister, E. (2011). Neural networks and support vector machine models applied to energy consumption optimization in semiautogeneous grinding. Chemical Engineering Transactions, 25, 761–766.

    Google Scholar 

  • Dadkhah, M. R., et al. (2017). Prediction of solubility of solid compounds in supercritical CO2 using a connectionist smart technique. The Journal of Supercritical Fluids, 120, 181–190.

    Article  Google Scholar 

  • Dehghan-Monfared, A., Helalizadeh, A., Parvizi, H., & Zobeidi, K. (2014). A global optimization technique using gradient information for history matching. Energy Sources, 36(13), 1414–1428.

    Article  Google Scholar 

  • Di-Nola, A., Pedrycz, W., Sessa, S., & Sanchez, E. (1991). Fuzzy relation equations theory as a basis of fuzzy modelling: An overview. Fuzzy Sets and Systems, 40(3), 415–429.

    Article  Google Scholar 

  • Edwards, J. T., et al. (1998). Validation of gravity-dominated relative permeability and residual oil. Louisiana.

    Google Scholar 

  • Eslamimanesh, A., et al. (2012). Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen + water soluble organic promoters using Support Vector Machine algorithm. Fluid Phase Equilibria, 316, 34–45.

    Article  Google Scholar 

  • Esmaeili, S., Sarma, H., Harding, T., & Maini, B. (2019a). Correlations for effect of temperature on oil/water relative permeability in clastic reservoirs. Fuel, 246, 93–103.

    Article  Google Scholar 

  • Esmaeili, S., Sarma, H., Harding, T., & Maini, B. (2019b). A data-driven model for predicting the effect of temperature on oil-water relative permeability. Fuel, 236, 264–277.

    Article  Google Scholar 

  • Fatt, I. (1953). The effect of overburden pressure on relative permeability. Journal of Petroleum Technology, 5(10), 15–16.

    Article  Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67.

    Google Scholar 

  • Gaafar, G. R., Tewari, R. D., & Zain, Z. M. (2015). Overview of advancement in core analysis and its importance in reservoir characterisation for maximising recovery. Malaysia, Society of Petroleum Engineers.

    Book  Google Scholar 

  • Galloway, W. E., et al. (1983). Atlas of Major Texas Oil Reservoirs. University of Texas at Austin.

    Book  Google Scholar 

  • Gates, J. I., & Lietz, W. T. (1950). Relative permeabilities of california cores by the capillary—pressure method. American Petroleum Institute.

    Google Scholar 

  • Geffen, T. M., Owens, W. W., Parrish, D. R., & Morse, R. A. (1951). Experimental investigation of factors affecting laboratory relative permeability measurements. Journal of Petroleum Technology, 3(4), 99–110.

    Article  Google Scholar 

  • Geurts, P. & Wehenkel, L., (2000). Investigation and Reduction of Discretization Variance in Decision Tree Induction. In: L. d. M. R. & P. E., eds. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence). Berlin, Heidelberg: Springer.

  • Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42.

    Article  Google Scholar 

  • Gharagheizi, F., et al. (2011). Solubility parameters of nonelectrolyte organic compounds: Determination using quantitative structure-property relationship strategy. Industrial and Engineering Chemistry Research, 50(19), 11382–11395.

    Article  Google Scholar 

  • Gheyas, I. A., & Smith, L. S. (2010). Feature subset selection in large dimensionality domains. Pattern Recognition, 43(1), 5–13.

    Article  Google Scholar 

  • Ghiasi, M. M., Ghasemi, M. F., Heidaripour, V. & Mohammadi, A. H., (2019b). Distinct methodologies to assess the conditions of petroleum reservoirs with respect to onset of sand production. Petroleum and Coal, 61(2).

  • Ghiasi, M. M., Zendehboudi, S., & Mohsenipour, A. A. (2020). Decision tree-based diagnosis of coronary artery disease: CART model. Computer Methods and Programs in Biomedicine, 192, 105400.

    Article  Google Scholar 

  • Ghiasi, M. M., et al. (2013). Novel methods predict equilibrium vapor methanol content during gas hydrate inhibition. Journal of Natural Gas Science and Engineering, 15, 69–75.

    Article  Google Scholar 

  • Ghiasi, M. M., et al. (2015c). Development of soft computing methods to predict moisture content of natural gases. Journal of the Taiwan Institute of Chemical Engineers, 55, 36–41.

    Article  Google Scholar 

  • Ghiasi, M. M., et al. (2016b). Rapid prediction of Prandtl number of compressed air. Chemical Engineering, 123(6), 52.

    Google Scholar 

  • Ghiasi, M. M., et al. (2016c). Modeling of stability conditions of natural gas clathrate hydrates using least squares support vector machine approach. Journal of Molecular Liquids, 223, 1081–1092.

    Article  Google Scholar 

  • Ghiasi, M. M., Abedi-Farizhendi, S., & Mohammadi, A. H. (2019a). Modeling equilibrium systems of amine-based CO2 capture by implementing machine learning approaches. Environmental Progress and Sustainable Energy, 38(5), 13160.

    Article  Google Scholar 

  • Ghiasi, M. M., Arabloo, M., Bahadori, A., & Zendehboudi, S. (2015a). Prediction of methanol loss in liquid hydrocarbon phase during natural gas hydrate inhibition using rigorous models. Journal of Loss Prevention in the Process Industries, 33, 1–9.

    Article  Google Scholar 

  • Ghiasi, M. M., Arabloo, M., Mohammadi, A. H., & Barghi, T. (2016a). Application of ANFIS soft computing technique in modeling the CO2 capture with MEA, DEA, and TEA aqueous solutions. International Journal of Greenhouse Gas Control, 49, 47–54.

    Article  Google Scholar 

  • Ghiasi, M. M., Bahadori, A., & Zendehboudi, S. (2014a). Estimation of the water content of natural gas dried by solid calcium chloride dehydrator units. Fuel, 117, 33–42.

    Article  Google Scholar 

  • Ghiasi, M. M., Bahadori, A., Zendehboudi, S., & Chatzis, I. (2015b). Rigorous models to optimise stripping gas rate in natural gas dehydration units. Fuel, 140, 421–428.

    Article  Google Scholar 

  • Ghiasi, M. M., Hajinezhad, A., Yousefi, H., & Mohammadi, A. H. (2017). CO2 loading capacity of DEA aqueous solutions: Modeling and assessment of experimental data. International Journal of Greenhouse Gas Control, 56, 289–301.

    Article  Google Scholar 

  • Ghiasi, M. M., & Mohammadi, A. H. (2014). Rigorous modeling of CO2 equilibrium absorption in MEA, DEA, and TEA aqueous solutions. Journal of Natural Gas Science and Engineering, 18, 39–46.

    Article  Google Scholar 

  • Ghiasi, M. M., & Mohammadi, A. H. (2015). Development of reliable models for determination of required monoethanolamine (MEA) circulation rate in amine plants. Separation Science and Technology, 50(14), 2248–2256.

    Google Scholar 

  • Ghiasi, M. M., & Mohammadi, A. H. (2017). Application of decision tree learning in modelling CO2 equilibrium absorption in ionic liquids. Journal of Molecular Liquids, 242, 594–605.

    Article  Google Scholar 

  • Ghiasi, M. M., Shahdi, A., Barati, P., & Arabloo, M. (2014b). Robust modeling approach for estimation of compressibility factor in retrograde gas condensate systems. Industrial and Engineering Chemistry Research, 53(32), 12872–12887.

    Article  Google Scholar 

  • Ghiasi, M. M., & Zendehboudi, S. (2019). Decision tree-based methodology to select a proper approach for wart treatment. Computers in Biology and Medicine, 108, 400–409.

    Article  Google Scholar 

  • Golay, J., Leuenberger, M., & Kanevski, M. (2017). Feature selection for regression problems based on the Morisita estimator of intrinsic dimension. Pattern Recognition, 70, 126–138.

    Article  Google Scholar 

  • Gomaa, E. E., Duerksen, J. H., & Woo, P. T. (1977). Designing a Steamflood Pilot in the Thick Monarch Sand of the Midway-Sunset Field. Journal of Petroleum Technology, 29(2), 1559–1568.

    Article  Google Scholar 

  • Gunn, S. R. (1998). Support vector machines for classification and regression. University of Southampton.

    Google Scholar 

  • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3(7–8), 1157–1182.

    Google Scholar 

  • Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (Eds.). (2006). Feature Extraction: Foundations and Applications. Springer.

    Google Scholar 

  • Hamedi, H., Ehteshami, M., Mirbagheri, S. A., & Zendehboudi, S. (2019). New deterministic tools to systematically investigate fouling occurrence in membrane bioreactors. Chemical Engineering Research and Design, 144, 334–353.

    Article  Google Scholar 

  • Hassler, G. L., (1942) Method and Apparatus for Permeability Measurements. US, Patent No. 2,345,935

  • Hassler, G. L., (1944) Method and apparatus for permeability measurements. US, Patent No. 2,345,935

  • Hawkins, J. T., (1989). Comparison of three methods of relative permeability measurement. The Log Analyst, 30(5).

  • Haykin, S. S., (1999). Neural Networks: A Comprehensive Foundation. 2nd ed. Prentice Hall.

  • Heidari, E., & Ghoreishi, S. M. (2013). Prediction of supercritical extraction recovery of EGCG using hybrid of adaptive neuro-fuzzy inference system and mathematical model. The Journal of Supercritical Fluids, 82, 158–167.

    Article  Google Scholar 

  • Hetherington, G., (1961). Relative Permeabilities and Capillary Pressure in the Burgan and Wara Sands. Dhahran, Saudi Arabia

  • Higashi, M., & Klir, G. J. (1984). Resolution of finite fuzzy relation equations. Fuzzy Sets and Systems, 13(1), 65–82.

    Article  Google Scholar 

  • Honarpour, M., Koederitz, L. F., & Harvey, A. H. (1982). Empirical equations for estimating two-phase relative permeability in consolidated rock. Journal of Petroleum Technology, 34(12), 2905–2908.

    Article  Google Scholar 

  • Honarpour, M., Koederitz, L. F., & Harvey, A. H. (1986). Relative permeability of petroleum reservoirs. CRC Press Inc.

    Google Scholar 

  • Honarpour, M., & Mahmood, S. M. (1988). Relative-permeability measurements: An overview. Journal of Petroleum Technology, 40(8), 963–966.

    Article  Google Scholar 

  • Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.

    Article  Google Scholar 

  • Hu, X., Hu, S., Jin, F., & Huang, S. (Eds.). (2017). Physics of Petroleum Reservoirs. Springer-Verlag.

    Google Scholar 

  • Huang, Y., Wong, P. M. & Gedeon, T. D., (1996). An improved fuzzy neural network for permeability estimation from wireline logs in a petroleum reservoir. Perth, WA, 912–917.

  • Huang, D. D., Honarpour, M. M. & Al-Hussainy, R., (1997). An Improved Model for Relative Permeability and Capillary Pressure Incorporating Wettability. Calgary, Canada.

  • Huang, Y., Gedeon, T. D., & Wong, P. M. (2001). An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs. Engineering Applications of Artificial Intelligence, 14(1), 15–21.

    Article  Google Scholar 

  • Huang, Z., Shimeld, J., Williamson, M., & Katsube, J. (1996b). Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada. Geophysics, 61(2), 422–436.

    Article  Google Scholar 

  • Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.

    Article  Google Scholar 

  • Ibrahim, M. N. M. & Koederitz, L. F., (2000) Two-Phase Relative Permeability Prediction Using a Linear Regression Model. Morgantown, West Virginia

  • Irani, R., & Nasimi, R. (2011). Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir. Expert Systems with Applications, 38(8), 9862–9866.

    Article  Google Scholar 

  • Jang, J.-S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  • Jenkins, R. E. (1961). Characteristics of the delaware formation. Journal of Petroleum Technology, 13(12), 1231–1236.

    Article  Google Scholar 

  • Johnson, E. F., Bossler, D. P., & Bossler, V. O. N. (1959). Calculation of relative permeability from displacement experiments. Petroleum Transactions, AIME, 216, 370–372.

    Article  Google Scholar 

  • Johnson, H. R., & Boley, D. W. (1963). Waterflooding possibilities of the Clinton Sand, Logan Oilfield, Hocking County, Ohio. Producers Monthly, 27(12), 22–26.

    Google Scholar 

  • Jones, S. C., & Roszelle, W. O. (1978). Graphical techniques for determining relative permeability from displacement experiments. Journal of Petroleum Technology, 30(5), 807–817.

    Article  Google Scholar 

  • Kamari, A., Bahadori, A., Mohammadi, A. H., & Zendehboudi, S. (2014a). Evaluating the unloading gradient pressure in continuous gas-lift systems during petroleum production operations. Petroleum Science and Technology, 32(24), 2961–2968.

    Article  Google Scholar 

  • Kamari, A., Bahadori, A., Mohammadi, A. H., & Zendehboudi, S. (2015). New tools predict monoethylene glycol injection rate for natural gas hydrate inhibition. Journal of Loss Prevention in the Process Industries, 33, 222–231.

    Article  Google Scholar 

  • Kamari, A., Mohammadi, A. H., Bahadori, A., & Zendehboudi, S. (2014b). Prediction of air specific heat ratios at elevated pressures using a novel modeling approach. Chemical Engineering and Technology, 37(12), 2047–2055.

    Article  Google Scholar 

  • Kasabov, N. K., (1996). Foundations of neural networks, fuzzy systems, and knowledge engineering. 1st ed. Cambridge, MA, USA; London, UK: MIT Press.

  • Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Journal of the Royal Statistical Society Series C (Applied Statistics), 29(2), 119–127.

    Google Scholar 

  • Khajeh, A., & Modarress, H. (2010). Prediction of solubility of gases in polystyrene by Adaptive Neuro-Fuzzy inference system and radial basis function neural network. Expert Systems with Applications, 37(4), 3070–3074.

    Article  Google Scholar 

  • Khoukhi, A. (2012). Hybrid soft computing systems for reservoir PVT properties prediction. Computers and Geosciences, 44, 109–119.

    Article  Google Scholar 

  • Koederitz, L., Harvey, A. H. & Honarpour, M., (1989). Introduction to petroleum reservoir analysis. Gulf Pub. Co.

  • Koederitz, L. F. & Mohamad-Ibrahim, M. N., 2002. Developing a Proficient Relative Permeability Resource from Historical Data. Calgary, Alberta

  • Kondori, J., Miah, M. I., Zendehboudi, S., Khan, F., & Heagle, D. (2021). Hybrid connectionist models to assess recovery performance of low salinity water injection. Journal of Petroleum Science and Engineering, 197, 107833.

    Article  Google Scholar 

  • Leas, W. J., Jenks, J. H., & Russell, C. D. (1950). Relative permeability to gas. Journal of Petroleum Technology, 2(3), 65–72.

    Article  Google Scholar 

  • Li, K. & Horne, R. N., (2006). Comparison of methods to calculate relative permeability from capillary pressure in consolidated water-wet porous media. Water Resources Research, 42(6).

  • Liu, H., et al. (2005). Accurate quantitative structure−property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine. The Journal of Physical Chemistry B, 109(403), 20565–20571.

    Article  Google Scholar 

  • Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P., (2013). Understanding variable importance in forests of randomized trees. Lake Tahoe, Nevada, USA, 431–439.

  • Lucia, F. J. (1999). Carbonate reservoir characterization: An integrated approach. Springer Science & Business Media.

    Book  Google Scholar 

  • Malki, H. A., Baldwin, J. L., & Kwari, M. A. (1996). Estimating permeability by use of neural networks in thinly bedded shaly gas sands. SPE Computer Applications, 8(2), 58–62.

    Article  Google Scholar 

  • Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.

    Article  Google Scholar 

  • Mehrabi, M., & Pesteei, S. M. (2010). Adaptive neuro-fuzzy modeling of convection heat transfer of turbulent supercritical carbon dioxide flow in a vertical circular tube. International Communications in Heat and Mass Transfer, 37(10), 1546–1550.

    Article  Google Scholar 

  • Merliss, F. E., Doane, J. D., & Rzasa, M. J. (1955). Influence of rock and fluid properties on immiscible fluid-flow behavior in porous media. Louisiana.

    Book  Google Scholar 

  • Mohaghegh, S., Arefi, R., Ameri, S., & Hefner, M. H. (1994). A methodological approach for reservoir heterogeneity characterization using artificial neural networks. Society of Petroleum Engineers.

    Book  Google Scholar 

  • Mohaghegh, S., Arefi, R., Ameri, S., & Rose, D. (1995). Design and development of an artificial neural network for estimation of formation permeability. SPE Computer Applications, 7(6), 151–154.

    Article  Google Scholar 

  • Mohaghegh, S., Balan, B., & Ameri, S. (1997). Permeability determination from well log data. SPE Formation Evaluation, 12(3), 170–174.

    Article  Google Scholar 

  • Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522.

    Article  Google Scholar 

  • Muller, K. R., Mika, S., Ratsch, G., Tsuda, K., & Scholkopf, B. (2001). An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2), 181–201.

    Article  Google Scholar 

  • Nait-Amar, M., Zeraibi, N., Hemmati-Sarapardeh, A., & Shamshirband, S. (2019a). Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: Application to thermal enhanced oil recovery processes. Fuel, 242, 649–663.

    Article  Google Scholar 

  • Nait-Amar, M., Zeraibi, N., Hemmati-Sarapardeh, A., Shamshirband, S., Mosavi, A., & Chau, K. (2019b). Modeling temperature dependency of oil—water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Engineering Applications of Computational Fluid Mechanics, 13(1), 724–743.

    Article  Google Scholar 

  • Olafuyi, O. A., Cinar, Y., Knackstedt, M. A., & Pinczewski, W. V. (2008). Capillary pressure and relative permeability of small cores. Oklahoma, USA, Society of Petroleum Engineers.

    Book  Google Scholar 

  • Olatunji, S. O., Selamat, A., & AbdulRaheem, A. A. (2011). Predicting correlations properties of crude oil systems using type-2 fuzzy logic systems. Expert Systems with Applications, 38(9), 10911–10922.

    Article  Google Scholar 

  • Oren, P.-E., Bakke, S., & Arntzen, O. J. (1998). Extending predictive capabilities to network models. SPE Journal, 3(4), 324–336.

    Article  Google Scholar 

  • Perez-Riverol, Y. et al., (2017). Accurate and fast feature selection workflow for high-dimensional omics data. PLoS ONE, 12(12).

  • Pirson, S. J. (1958). Oil reservoir engineering. McGraw-Hill.

    Google Scholar 

  • Pirson, S. J., & Boatman, E. M. (1964). Prediction of relative permeability characteristics of intergranular reservoir rocks from electrical resistivity measurements. Journal of Petroleum Technology, 16(5), 564–570.

    Article  Google Scholar 

  • Pope, G. A., et al. (1998). Modeling relative permeability effects in gas-condensate reservoirs. Louisiana.

    Book  Google Scholar 

  • Purcell, W. R. (1949). Capillary pressures—their measurement using mercury and the calculation of permeability therefrom. Journal of Petroleum Technology, 1(2), 39–48.

    Article  Google Scholar 

  • Quinlan, J. R., (1993). C4.5: programs for machine learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

  • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.

    Article  Google Scholar 

  • Raghavan, R., Chu, W. C. & Jones, J. R., (1995). Practical Considerations in the Analysis of Gas-Condensate Well Tests. Dallas, Texas

  • Richardson, J. G., Kerver, J. K., Hafford, J. A., & Osoba, J. S. (1952). Laboratory determination of relative permeability. Journal of Petroleum Technology, 4(8), 187–196.

    Article  Google Scholar 

  • Rokach, L., & Maimon, O. (2008). Data mining with decision trees: Theory and applications. World Scientific Publishing Co., Inc.

    Google Scholar 

  • Saemi, M., Ahmadi, M., & Yazdian-Varjani, A. (2007). Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. Journal of Petroleum Science and Engineering, 59(1–2), 97–105.

    Article  Google Scholar 

  • Safari, H., Nekoeian, S., Shirdel, M. R., Ahmadi, H., Bahadori, A., & Zendehboudi, S. (2014b). Assessing the Dynamic Viscosity of Na–K–Ca–Cl–H2O Aqueous Solutions at High-Pressure and High-Temperature Conditions. Industrial and Engineering Chemistry Research, 53(28), 11488–11500.

    Article  Google Scholar 

  • Safari, H., Shokrollahi, A., Jamialahmadi, M., Ghazanfari, M. H., Bahadori, A., & Zendehboudi, S. (2014a). Prediction of the aqueous solubility of BaSO4 Using Pitzer Ion Interaction Model and LSSVM Algorithm. Fluid Phase Equilibria, 374, 48–62.

    Article  Google Scholar 

  • Saghafi, H., Ghiasi, M. M., & Mohammadi, A. H. (2017a). CO2 capture with aqueous solution of sodium glycinate: Modeling using an ensemble method. International Journal of Greenhouse Gas Control, 62, 23–30.

    Article  Google Scholar 

  • Saghafi, H., Ghiasi, M. M., & Mohammadi, A. H. (2017b). Analyzing the experimental data of CO2 equilibrium absorption in the aqueous solution of DEA+ MDEA with Random Forest and Leverage method. International Journal of Greenhouse Gas Control, 63, 329–337.

    Article  Google Scholar 

  • Sanchez, E. (1976). Resolution of composite fuzzy relation equations. Information and Control, 30(1), 38–48.

    Article  Google Scholar 

  • Sandberg, C. R., Gournay, L. S., & Sippel, R. F. (1958). The Effect of fluid-flow rate and viscosity on laboratory determinations of oil-water relative permeabilities. Transactions of the AIME, 213(1), 36–43.

    Article  Google Scholar 

  • Schneider, F. N., & Owens, W. W. (1976). Relative permeability studies of gas-water flow following solvent injection in carbonate rocks. Society of Petroleum Engineers Journal, 16(1), 23–30.

    Article  Google Scholar 

  • Schölkopf, B., Burges, C. J. C., & Smola, A. J. (Eds.). (1999). Advances in Kernel Methods: Support Vector Learning. The MIT Press.

    Google Scholar 

  • Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regularization, optimization, and beyond (1st ed.). MIT Press.

    Google Scholar 

  • Seyyedattar, M., Ghiasi, M. M., Zendehboudi, S. & Butt, S., (2020). Determination of bubble point pressure and oil formation volume factor: Extra trees compared with LSSVM–CSA hybrid and ANFIS models. Fuel, 269.

  • Seyyedattar, M., Zendehboudi, S., & Butt, S. (2018). A comprehensive review on fluid and rock characterization of offshore petroleum reservoirs: Tests, empirical and theoretical tools. Journal of Porous Media, 22(13), 1697–1755.

    Article  Google Scholar 

  • Seyyedattar, M., Zendehboudi, S., & Butt, S. (2019). A comprehensive review on fluid and rock characterization of offshore petroleum reservoirs: Tests, empirical and theoretical tools. Journal of Porous Media, 22(13), 1697–1755.

    Article  Google Scholar 

  • Shafer, J. (2013). Recent advances in core analysis. Petrophysics, 54(6), 554–579.

    Google Scholar 

  • Shafiei, A., Dusseault, M. B., Zendehboudi, S., & Chatzis, I. (2013). A new screening tool for evaluation of steamflooding performance in naturally fractured carbonate reservoirs. Fuel, 108, 502–514.

    Article  Google Scholar 

  • Shelton, J. L., & Schneider, F. N. (1975). The effects of water injection on miscible flooding methods using hydrocarbons and carbon dioxide. Society of Petroleum Engineers Journal, 15(3), 217–226.

    Article  Google Scholar 

  • Sigmund, P. M., & McCaffery, F. G. (1979). An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media. Society of Petroleum Engineers Journal, 19(1), 15–28.

    Article  Google Scholar 

  • Sinehbaghizadeh, S., et al. (2019). Evaluation of phase equilibrium conditions of clathrate hydrates using connectionist modeling strategies. Fuel, 255, 115649.

    Article  Google Scholar 

  • Skopec, R. A., (1992). Recent Advances in Rock Characterization. The Log Analyst, 33(3).

  • Slack, W. W. & Ehrlich, R., (1981). Immiscible Displacement of Oil by Simultaneous Injection of Water and Nitrogen. Tulsa, Oklahoma

  • Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, Bagging and Random Forests. Psychological Methods, 14(4), 323–348.

    Article  Google Scholar 

  • Sugeno, M. (1985). Industrial applications of fuzzy control. Elsevier.

    Google Scholar 

  • Sugeno, M., & Kang, G. T. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28(1), 15–33.

    Article  Google Scholar 

  • Sumnu-Dindoruk, M. D., & Jones, J. R. (1988). Determination of gas-condensate relative permeabilities from field production data. Louisiana.

    Google Scholar 

  • Suykens, J. & Vandewalle, J., (1999). Least squares support vector machine classifiers. Neural Processing Letters (1999) 9: 293, 9(3), p. 293–300.

  • Suykens, J. A. K., et al. (2002b). Least squares support vector machines (1st ed.). World Scientific Publishing Co., Pte. Ltd.

    Book  Google Scholar 

  • Suykens, J. A. K., DeBrabanter, J., Lukas, L., & Vandewalle, J. (2002a). Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 48(1–4), 85–105.

    Article  Google Scholar 

  • Suykens, J. A. K., Lukas, L., & Vandewalle, J. (2000). Sparse approximation using least squares support vector machines. IEEE.

    Book  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC, 15(1), 116–132.

    Article  Google Scholar 

  • Talash, A. W., (1976) Experimental and Calculated Relative Permeability Data for Systems Containing Tension Additives. Tulsa, Oklahoma

  • Talebi, R., et al. (2014). Application of soft computing approaches for modeling saturation pressure of reservoir oils. Journal of Natural Gas Science and Engineering, 20, 8–15.

    Article  Google Scholar 

  • Tarek Helmy, A. F. K. F. (2010). Hybrid computational models for the characterization of oil and gas reservoirs. Expert Systems with Applications, 37(7), 5353–5363.

    Article  Google Scholar 

  • Thomas, R. D., & Ward, D. C. (1972). Effect of overburden pressure and water saturation on gas permeability of tight sandstone cores. Journal of Petroleum Technology, 24(2), 120–124.

    Article  Google Scholar 

  • Tielong, C., Yong, Z., Kezong, P., & Wanfeng, P. (1996). A Relative permeability modifier for water control of gas wells in a low-permeability reservoir. SPE Reservoir Engineering, 11(3), 168–173.

    Article  Google Scholar 

  • Van Genuchten, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America, 44(5), 892–898.

    Article  Google Scholar 

  • Vapnik, V., Golowich, S. E. & Smola, A. J., (1997). Support Vector Method for Function Approximation, Regression Estimation and Signal Processing.

  • Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-Verlag.

    Book  Google Scholar 

  • Vapnik, V. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988–999.

    Article  Google Scholar 

  • Virnovsky, G. A., Vatne, K. O., SkjaeveLand, S. M., & Lohne, A. (1998). Implementation of multirate technique to measure relative permeabilities accounting. Louisiana.

    Book  Google Scholar 

  • Wang, H. (1995). A multi-objective mathematical programming problem with fuzzy relation constraints. Journal of Multi-Criteria Decision Analysis - Optimization, Learning, and Decision Support, 4(1), 23–35.

    Article  Google Scholar 

  • Wehenkel, L., Ernst, D. & Geurts, P., (2006). Ensembles of extremely randomized trees and some generic applications. Versailles, France

  • Wehenkel, L. (1997). Discretization of continuous attributes for supervised learning (pp. 381–388). Czech Republic.

    Google Scholar 

  • Wiebe, W. A. V., (1930). Oil fields in the United States. 1 ed., New York; London: McGraw-Hill Book Company, Inc.

  • Wieland, D., Wotawa, F., & Wotawa, G. (2002). From neural networks to qualitative models in environmental engineering. Computer-Aided Civil and Infrastructure Engineering, 17(2), 104–118.

    Article  Google Scholar 

  • Wiener, J. M., Rogers, J. A., & Moll, R. E. (1991). Predicting Carbonate Permeabilities from Wireline Logs Using a Back-Propagation Neural Network. Society of Exploration Geophysicists.

    Book  Google Scholar 

  • Winston, W. L. (1995). Introduction to mathematical programming: Applications and algorithms. Daxbury Press.

    Google Scholar 

  • Wong, P. M., Jian, F. X., & Taggart, I. J. (1995). A critical comparison of neural networks and discriminant analysis in lithofacies, porosity and permeability predictions. Journal of Petroleum Geology, 18(2), 191–206.

    Article  Google Scholar 

  • Xavier-de-Souza, S., Suykens, J. A. K., Vandewalle, J. & Bolle, D., (2009). Coupled Simulated Annealing. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) (Volume: 40, Issue: 2, April 2010), 40(2): 320.

  • Yarveicy, H., & Ghiasi, M. M. (2017). Modeling of gas hydrate phase equilibria: Extremely randomized trees and LSSVM approaches. Journal of Molecular Liquids, 243, 533–541.

    Article  Google Scholar 

  • Yarveicy, H., Ghiasi, M. M., & Mohammadi, A. H. (2018a). Performance evaluation of the machine learning approaches in modeling of CO2 equilibrium absorption in Piperazine aqueous solution. Journal of Molecular Liquids, 255, 375–383.

    Article  Google Scholar 

  • Yarveicy, H., Ghiasi, M. M., & Mohammadi, A. H. (2018b). Determination of the gas hydrate formation limits to isenthalpic Joule-Thomson expansions. Chemical Engineering Research and Design, 132, 208–214.

    Article  Google Scholar 

  • Yarveicy, H., Moghaddam, A. K., & Ghiasi, M. M. (2014). Practical use of statistical learning theory for modeling freezing point depression of electrolyte solutions: LSSVM model. Journal of Natural Gas Science and Engineering, 20, 414–421.

    Article  Google Scholar 

  • Yarveicy, H., Saghafi, H., Ghiasi, M. M., & Mohammadi, A. H. (2019). Decision tree-based modeling of CO2 equilibrium absorption in different aqueous solutions of absorbents. Environmental Progress and Sustainable Energy, 38(s1), S441–S448.

    Article  Google Scholar 

  • Zendehboudi, S., Bahadori, A., Lohi, A., Elkamel, A., & Chatzis, I. (2013). Practical and economic aspects of the Ex-Situ process: Implications for CO2 Sequestration. Energy and Fuels, 27(1), 401–413.

    Article  Google Scholar 

  • Zendehboudi, S., Rezaei, N., & Lohi, A. (2018). Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review. Applied Energy, 228, 2539–2566.

    Article  Google Scholar 

  • Ziaee, H., et al. (2015). Prediction of solubility of carbon dioxide in different polymers using support vector machine algorithm. Journal of the Taiwan Institute of Chemical Engineers, 46, 205–213.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Memorial University, Equinor Canada, InnovateNL, and Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Zendehboudi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 310 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyyedattar, M., Zendehboudi, S. & Butt, S. Relative Permeability Modeling Using Extra Trees, ANFIS, and Hybrid LSSVM–CSA Methods. Nat Resour Res 31, 571–600 (2022). https://doi.org/10.1007/s11053-021-09950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09950-1

Keywords

Navigation