Skip to main content
Log in

Use of Carbonatites in the Production of Precipitated Calcium Carbonate: A Case Study from Eppawala, Sri Lanka

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The study investigates the possibility of using carbonatite in the production of precipitated calcium carbonate (PCC). We made use of fresh apatite-rich carbonatites found at the phosphate mining sites at Eppawala, Sri Lanka. Analyses of the fresh carbonatite were performed with the aid of optical microscopy, powder X-ray diffraction (XRD), atomic absorption spectrophotometry (AAS), UV/visible spectrophotometry (UVVS), and thermo gravimetric analysis (TGA). Quicklime obtained from calcinations of carbonatites was used in synthesizing PCC via a lime-soda process. The end product was analyzed with XRD, TGA, AAS, and UVVS. Results revealed that the most common CO3 2− phase available in fresh carbonatites is calcite (>65%). The Ca-rich CO3 2− phase can be distinguished easily from other available minerals because its mode of occurrence in carbonatite matrix is different to that of other minerals. The results of TGA show that the decomposition of CO3 2− phase initiates at about 340°C, which leads to lower energy consumption during calcinations. Post-magmatic hydrothermal process may have been the cause of the formation of thermally unstable CO3 2− phases. Hydration of quicklime from the carbonatite yields much higher Ca2+ in the solution than from marble under the same experimental conditions. The synthesized PCC particles are in the calcite polymorphic form. The purity of PCC varies from 96 to 98 wt%. The maximum precipitable CaCO3 from 1 g of quicklime is about 1.1 g. Hence, fresh carbonatites has great economic potential for the production of PCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Altay, E., Shahwan, T., & Tanoglu, M. (2007). Morphosynthesis of CaCO3 at different reaction temperatures and the effects of PDDA, CTAB, and EDTA on the particle morphology and polymorph stability. Powder Technology, 178, 194–202.

    Article  Google Scholar 

  • Bandi, W. R., & Krapf, G. (1976). The effect of CO2 pressure and alkali salt on the mechanism of decomposition of dolomite. Thermochimica Acta, 14(1–2), 221–243.

    Article  Google Scholar 

  • Belgachem, K., Llewellyn, P., Nahdia, K., & Ayadi, M. T. (2008). Thermal behavior study of the talc. Journal of Optoelectronics and Advanced Materials—Rapid Communications, 2(6), 332–336.

    Google Scholar 

  • Beruto, D. T., Vecchiattini, R., & Giordani, M. (2003a). Solid products and rate-limiting step in the thermal half decomposition of natural dolomite in a CO2(g) atmosphere. Thermochimica Acta, 405, 183–194.

    Article  Google Scholar 

  • Beruto, D. T., Vecchiattini, R., & Giordani, M. (2003b). Effect of mixtures of H2O(g) and CO2(g) on the thermal half decomposition of dolomite natural stone in high CO2 pressure regime. Thermochimica Acta, 404, 25–33.

    Article  Google Scholar 

  • Bose, K., & Gangully, J. (1994). Thermogravimetric study of the dehydration kinetics of talc. American Mineralogist, 79, 692–699.

    Google Scholar 

  • Castor, S. B., & Hedrick, J. B. (2006). Rare earth elements. In J. E. Kogel, N. C. Trivedi, J. M. Barker, & S. T. Krukowski (Eds.), Industrial minerals & rocks: Commodities, markets, and uses (7th ed., pp. 769–792). Englewood, CO: Society for Mining, Metallurgy and Exploration.

    Google Scholar 

  • Chang, L. L. Y., Howie, R. A. & Zussman, J. (1996). Non-silicates: Sulfates, carbonates, phosphates, halides. In W. A. Deer, R. A. Howie, J. Zussman, & L. L. Y. Chang (Eds.), Rock forming minerals (Vol. 5B, pp. 189–218). London: Geological Society.

  • Chudy, T. C., & Groat, L. A. (2010). The origin of the tantalum-bearing upper fir carbonatite, east-central British Columbia, Canada: Preliminary results. In Acta Mineralogica Petrographica Abstract Series, Szeged (pp. 6–566).

  • Crowley, M. S., & Roy, R. (1964). Crystalline solubility in the muscovite and phlogopite groups. American Mineralogist, 49, 348–362.

    Google Scholar 

  • Dahanayake, K., & Subasinghe, S. M. N. D. (1989). A modern terrestrial phosphorite: an example from Sri Lanka. Sedimentary Geology, 61, 311–316.

    Article  Google Scholar 

  • Deans, T. (1978). Mineral production from carbonatite complexes, a world review. In J. R. de Andrate Romos (Ed.), Proceedings of the First International Symposium on Carbonatites (pp. 123–133), Junho Pocos de Caldas.

  • Deer, W. A., Howie, R. A., & Zussman, J. (1986). An introduction to rock forming minerals (Twelfth impression). London: Longman.

  • Descostes, M., Vitorge, P., & Beaucaire, C. (2004). Pyrite dissolution in acidic media. Geochimica Cosmochimica Acta, 68(22), 4559–4569.

    Article  Google Scholar 

  • Domingo, C., Garcia-Carmona, J., Loste, E., Fanovich, A., Fraile, J., & Gomez-Morales, J. (2004). Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media. Journal of Crystal Growth, 271, 268–273.

    Article  Google Scholar 

  • Domingo, C., Loste, E., Gomez, J., Garcia-Carmona, J., & Fraile, J. (2006). Calcite precipitation by a high-pressure CO2 carbonation route. Journal of Supercritical Fluid, 36, 202–215.

    Article  Google Scholar 

  • Doroshkevich, A. G., Viladkar, S. G., Ripp, G. S., & Burtseva, M. V. (2009). Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Canadian Mineralogist, 47, 1105–1116.

    Article  Google Scholar 

  • Duojiao, G., Youning, X., Hai, Z., Jiuju, C., & Wenqiang, S. (2012). Thermogravimetric experiment research on kinetic model for thermal decomposition of carbide sludge. Advances in Biomedical Engineering, 9, 79–87.

    Google Scholar 

  • Elfil, H., & Roques, H. (2001). Role of hydrate phases of calcium carbonate on the scaling phenomenon. Desalination, 137(1–3), 177–186.

    Article  Google Scholar 

  • Engler, P., Santana, M. W., Mittleman, M. L., & Balazs, D. (1988). Non-isothermal, in situ XRD analysis of dolomite decomposition. The Rigaku Journal, 5(2), 3–8.

    Google Scholar 

  • Eriksson, S. C. (1989). Phalaborwa: A saga of magmatism, metamorphism and miscibility. In K. Bell (Ed.), Carbonatites: Genesis and evolution (pp. 221–254). London: Unwin Hyman.

    Google Scholar 

  • Gabrovšeka, R., Vukb, T., & Kaučiča, V. (2006). Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis. Acta Chimica Slovenica, 53, 159–165.

    Google Scholar 

  • Gregory, G. R., & Mariano, A. N. (1995). Natural occurrence and stability of pyrochlore in carbonatites, related hydrothermal systems, and weathering environments. MRS Proceedings, 412, 831.

    Article  Google Scholar 

  • Gunasekaran, S., & Anbalagan, G. (2007). Thermal decomposition of natural dolomite. Bulletin of Material Science, 30(4), 339–344.

    Article  Google Scholar 

  • Gwalani, L. G., Moore, K., & Simonetti, A. (2010). Carbonatites, alkaline rocks and the mantle: A special issue dedicated to Keith Bell. Mineralogy and Petrology, 98, 5–10.

    Article  Google Scholar 

  • Hollingbery, L. A., & Hull, T. R. (2010). The thermal decomposition of huntite and hydromagnesite—A review. Thermochimica Acta, 509, 1–11.

    Article  Google Scholar 

  • Hulkko, V. M., & Deng, Y. (1999). Effects of water-soluble inorganic salts and organic materials on the performance of different polymer retention aids. Journal of Pulp and Paper Science, 25, 378.

    Google Scholar 

  • Jarc, S., Maniatis, Y., Dotsika, E., Tambakopoulos, D., & Zupancic, N. (2010). Scientific characterization of the pohorje marbles, Slovenia. Archaeometry, 52(2), 177–190.

    Article  Google Scholar 

  • Jayawardena, D. (1976). The Eppawala carbonatite complex in North-West Sri Lanka. Economic Bulletin No 3, Geological Survey Department of Sri Lanka, Colombo, pp. 31–41.

  • Kemperl, J., & Macek, J. (2009). Precipitation of calcium carbonate from hydrated lime of variable reactivity, granulation and optical properties—Technical note. International Journal of Mineral Processing, 93, 84–88.

    Article  Google Scholar 

  • Kjarsgaard, I. H. (1998). Rare earth elements in Sövitic carbonatites and their mineral phases. Journal of Petrology, 39(11–12), 2105–2121.

    Article  Google Scholar 

  • Kristof, E., & Juhasz, A. Z. (1999). The effect of mechanical treatment on the crystal structure and thermal decomposition of dolomite. Thermochimica Acta, 342(1), 105–114.

    Article  Google Scholar 

  • Lapakko, K. (2002). Metal mine rock and waste characterization tools: An overview. Mining, Minerals and Sustainable Development Report No. 67.

  • Le Bas, M. J. (1987). Nephelinites and carbonatites. Geological Society, London, Special Publications, 30, 53–83.

    Article  Google Scholar 

  • Le Bas, M. J., Subbarao, K. V., & Walsh, J. N. (2002). Metacarbonatite or marble?—The case of the carbonate, pyroxenite, calcite–apatite rock complex at Borra, Eastern Ghats, India. Journal of Asian Earth Sciences, 20, 127–140.

    Article  Google Scholar 

  • Li, L., Collis, A., & Pelton, R. (2002). A new analysis of filler effects on paper strength. Journal of Pulp and Paper Science, 28(8), 267–273.

    Google Scholar 

  • Lopez-Periago, A. M., Pacciani, R., Garcia-Gonzalez, C., Vega, L. F., & Domingo, C. (2010). A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. Journal of Supercritical Fluid, 52, 298–305.

    Article  Google Scholar 

  • Mann, S., & Ozin, G. A. (1996). Synthesis of inorganic materials with complex form. Nature, 382, 313–318.

    Article  Google Scholar 

  • Manthilake, M. A. G. M., Sawada, Y., & Sakai, S. (2008). Genesis and evolution of Eppawala carbonatites; Sri Lanka. Journal of Asian Earth Sciences, 32, 66–75.

    Article  Google Scholar 

  • Mcintosh, R. M., Sharp, J. H., & Wilburn, F. W. (1990). The thermal decomposition of dolomite. Thermochimica Acta, 165(2), 281–296.

    Article  Google Scholar 

  • Modreski, P. J., Armbrustmacher, T. J., & Hoover, D. B. (1995). Carbonatitedeposits. In E. A. du Bray (Ed.), Preliminary compilation of descriptive geoenvironmental mineral deposits. Reston, VA: Geological Survey and Department of the Interior.

    Google Scholar 

  • Ono, H., & Deng, Y. (1997). Flocculation and retention of precipitated calcium carbonate by cationic polymeric micro particle flocculants. Journal of Colloid and Interface Science, 188, 183–192.

    Article  Google Scholar 

  • Orris, G. J., & Grauch, R. I. (2002). Rare earth element mines, deposits, and occurrences. U.S. Geological Survey, Open-File Report, Vol. 189, No. 2.

  • Palmer D. A., & Benezeth, P. (2003). Solubility of copper oxides in water and steam. In Fourteenth International Conference on the Properties of Water and Steam in Kyoto.

  • Park, W. K., Ko, S. J., Lee, S. W., Cho, K. H., Ahn, J. W., & Han, C. (2008). Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. Journal of Crystal Growth, 310, 2593–2601.

    Article  Google Scholar 

  • Pitawala, A., & Lottermoser, B. G. (2012). Petrogenesis of the Eppawala carbonatites, Sri Lanka: A cathodoluminescence and electron microprobe study. Mineralogy and Petrology, 105, 57–70.

    Article  Google Scholar 

  • Pitawala, A., Schidlowski, M., Dahanayake, K., & Hofmeister, W. (2003). Geochemical and petrological characteristics of Eppawala phosphate deposits, Sri Lanka. Mineralium Deposita, 38, 505–515.

    Article  Google Scholar 

  • Richardson, D. G., & Birkett, T. C. (1996). Carbonatite-associated deposits. In O. R. Eckstrand, W. D. Sinclair, & R. I. Thorpe (Eds.), Geology of Canadian mineral deposit types (pp. 541–558). Vancouver, BC: Geological Survey of Canada, Geology of Canada.

    Google Scholar 

  • Rodriguez, C., Ruiz, E., Luque, A., Rodriguez, A. B., & Ortega, M. (2009). Thermal decomposition of calcite: mechanisms of formation and textural evolution of CaO nanocrystals. American Mineralogist, 94, 578–593.

    Article  Google Scholar 

  • Roy, R. (1949). Decomposition and resynthesis of the micas. Journal of American ceramic Society, 32(6), 202–209.

    Article  Google Scholar 

  • Samtani, M., Dollimore, D., & Alexander, K. S. (2002). Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters. Thermochimica Acta, 392–393, 135–145.

    Article  Google Scholar 

  • Samtani, M., Dollimore, D., Wilburn, F. W., & Alexander, K. (2001). Isolation and identification of the intermediate and final products in the thermal decomposition of dolomite in an atmosphere of carbon dioxide. Thermochimica Acta, 367–368, 285–295.

    Article  Google Scholar 

  • Shahraki, B. K., Mehrabi, B., & Dabiri, R. (2009). Thermal behavior of Zefreh dolomite mine (Centeral Iran). Journal of Mining and Metallurgy, Section B: Metallurgy, 45B(1), 35–44.

    Article  Google Scholar 

  • Shahraki, B. K., Mehrabi, B., Gholizadeh, K., & Mohammadinasab, M. (2011). Thermal behavior of calcite as an expansive agent. Journal of Mining and Metallurgy, 47, 89–97.

    Article  Google Scholar 

  • Sidhu, P. S., Gilkes, R. J., Cornell, R. M., Posner, A. M., & Quirk, J. P. (1981). Dissolution of Iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays and Clay Minerals, 29(4), 269–276.

    Article  Google Scholar 

  • Streckeisen, A. (1978). IUGS subcommission on the systematics of igneous rocks. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks: Recommendations and suggestions. Neues Jahrbuch für Mineralogie—Abhandlungen, 134, 1–14.

    Google Scholar 

  • Streckeisen, A. (1979). Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks: Recommendations and suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 7, 331–335.

    Article  Google Scholar 

  • Tai, C. Y., & Chen, F. B. (1998). Polymorphism of CaCO3 precipitated in a constant-composition environment. AIChE Journal, 44(8), 1790–1798.

    Article  Google Scholar 

  • Teir, S., Eloneva, S., & Zevenhoven, R. (2005). Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Conversion and Management, 46, 2954–2979.

    Article  Google Scholar 

  • Tonsuaadu, K., Peld, M., & Bender, V. (2003). Thermal analysis of apatite structure. Journal of Thermal Analysis and Calorimetry, 72, 363–371.

    Article  Google Scholar 

  • Ukrainczyk, M., Kontrec, J., Babić-Ivančić, V., Brečević, L., & Kralj, D. (2007). Experimental design approach to calcium carbonate precipitation in a semicontinuous process. Powder Technology, 171, 192–199.

    Article  Google Scholar 

  • Verplanck, P. L., & Van Gosen, B. S. (2011). Carbonatite and alkaline intrusion-related rare earth element deposits—A deposit model. U. S. Geological Survey Open-File Report, 2011-1256.

  • Wall, F., & Mariano, A. N. (1996). Rare earth minerals in carbonatites: A discussion centered on the Kangankunde carbonatite, Malawi. In A. P. Jones, F. Wall, & C. T. Williams (Eds.), Rare earth minerals; Chemistry, origin and ore deposits. The Mineralogical Society, Series 7 (pp. 193–225). Boca Raton, FL: Chapman and Hall.

  • Wilsdorf, H. G. F., & Haul, R. A. W. (1951). X-ray study of the thermal decomposition of dolomite. Nature, 167, 945–946.

    Article  Google Scholar 

  • Woolley, A. R. (1987). Alkaline rocks and carbonatites of the World. Part 1: North and South America. London: British Museum (Natural History); Austin, TX: University of Texas Press.

  • Woolley, A. R., & Kempe, D. R. C. (1989). Carbonatites: Nomenclature, average chemical compositions, and element distribution. In K. Bell (Ed.), Carbonatites: Genesis and evolution (pp. 1–14). London: Unwin Hyman.

    Google Scholar 

  • Woolley, A. R., & Kjarsgaard, B. A. (2008). Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: Evidence from a global database. Canadian Mineralogist, 46(4), 741–752.

    Article  Google Scholar 

  • Xiang, L., Xiang, Y., Wang, Z. G., & Jin, Y. (2002). Influence of the chemical additives on the formation of super-fine calcium carbonate. Powder Technology, 126, 129–133.

    Article  Google Scholar 

  • Xiang, L., Xiang, Y., Wen, Y., & Wei, F. (2004). Formation of CaCO3 nanoparticles in the presence of terpineol. Material Letters, 58, 959–965.

    Article  Google Scholar 

  • Xu, H., Veblin, D. R., Luo, G., & Xue, A. (1996). Transmission electron microscopy study of the thermal decomposition of tremolite into clinopyroxene. American Mineralogist, 81, 1126–1132.

    Google Scholar 

  • Yang, K., Yang, Q., Li, G., Sun, Y., & Feng, D. (2006). Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites. Material Letters, 60(6), 805–809.

    Article  Google Scholar 

  • Zaitsev, A., & Polezhaeva, L. (1994). Dolomite–calcite textures in early carbonatites of the Kovdor ore deposit, Kola Peninsula, Russia: Their genesis and application for calcite–dolomite geothermometry. Contributions to Mineralogy and Petrology, 115, 339–344.

    Article  Google Scholar 

  • Zaitsev, A. N., Wall, F., & Le Bas, M. J. (1998). REE–Sr–Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: Their mineralogy, paragenesis and evolution. Mineralogical Magazine, 62(2), 225–250.

    Article  Google Scholar 

  • Zhang, H., Zhou, H. K., Wang, G. Q., & Yun, J. (2002). Preparation of nano-sized precipitated calcium carbonate for PVC plastisol rheology modification. Journal of Material Science Letters, 21(16), 1305–1306.

    Article  Google Scholar 

  • Zhao, L., Feng, J. D., & Wang, Z. (2009). In situ synthesis and modification of calcium carbonate nano-particles via a bobbling method. Science in China Series B-Chemistry, 52(7), 924–929.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Research Council (Grant No 11-178) of Sri Lanka is highly acknowledged. The authors thank anonymous reviewers and the editor-in-chief of NRR for their constructive comments which have helped in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. T. G. A. Pitawala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madugalla, T.B.N.S., Pitawala, H.M.T.G.A. & Karunaratne, D.G.G.P. Use of Carbonatites in the Production of Precipitated Calcium Carbonate: A Case Study from Eppawala, Sri Lanka. Nat Resour Res 23, 217–229 (2014). https://doi.org/10.1007/s11053-013-9222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-013-9222-8

Keywords

Navigation