Skip to main content
Log in

Evidence of novel crystal structure in cesium-doped sodium zirconate perovskite and its impact in optical and CO2 sorption properties

  • Original research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The synthesis and crystallographic stability of Cs+-doped Na2ZrO3 perovskite were explored to enhance optical properties and CO2 sorption at low temperatures (500 °C). Perovskite nanoparticles (\(\sim\) 20 nm) crystallize in monoclinic C 2/c symmetry and undergo a partial transformation to a new rhombohedral (Hex) \(R\overline{3 }m\) symmetry during synthesis. The newly obtained atomic coordinates are discussed with respect to their Wyckoff site multiplicity. The incorporation of Cs+ significantly improves perovskite stability (from t = 0.807 to t = 0.916). Optical band gap analysis reveals a reduction in photon energy from 3.91 to 3.54 eV, making it a promising photonic material due to its low phonon energy (\(\ge 430 {{\text{cm}}}^{-1}\)). Additionally, Cs concentration induces a porous structure that enhances CO2 capture capacity, as observed in CO2 sorption analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used or processed in this work will be available upon request to the corresponding author.

References

  1. Abdel-Aal SK, Abdel-Rahman AS (2020) Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J Nanopart Res 22:267–310

    Article  CAS  Google Scholar 

  2. Khine EE, Koncz-Horvath D, Kristaly F et al (2022) Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. J Nanopart Res 24:39–11

    Article  Google Scholar 

  3. Kumar A, Manam, J (2020) Red emitting Eu3+ doped Na2ZrO3 phosphor with high color purity for w-LED applications. AIP Conf Proc 2220:080005–6

  4. Kumar A, Manam J (2021) Thermally stable Na2ZrO3: Eu3+ phosphors for UV excited tricolor white LEDs. Mater Today Proc 46:6107–6112

    Article  CAS  Google Scholar 

  5. Santiago-Torres N, Romero-Ibarra IC, Pfeiffer H (2014) Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production. Fuel Process Technol 120:34–39

    Article  CAS  Google Scholar 

  6. de Lima JR, O, et al (2012) Strontium zirconate heterogeneous catalyst for biodiesel production: synthesis, characterization and catalytic activity evaluation. Appl Catal A Gen 445(446):76–82

    Article  Google Scholar 

  7. Munro S, Åhlén M, Cheung O, Sanna A (2020) Tuning Na2ZrO3 for fast and stable CO2 adsorption by solid state synthesis. Chem Eng J 388:124284–124313

    Article  CAS  Google Scholar 

  8. Zhao T, Rønning M, Chen D (2013) Preparation of nanocrystalline Na2ZrO3 for high-temperature CO2 acceptors: chemistry and mechanism. J Energy Chem 22:387–393

    Article  CAS  Google Scholar 

  9. Zhao T, Ochoa-Fernández E, Rønning M, Chen D (2007) Preparation and high-temperature CO2 capture properties of nanocrystalline Na2ZrO3. Chem Mater 19:3294–3301

    Article  CAS  Google Scholar 

  10. Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460

    Article  CAS  Google Scholar 

  11. Jo HG, Yoon HJ, Lee CH, Lee KB (2016) Citrate sol–gel method for the preparation of sodium zirconate for high-temperature CO2 sorption. Ind Eng Chem Res 55:3833–3839

    Article  CAS  Google Scholar 

  12. Tangsathitkulchai C, Naksusuk S, Wongkoblap A, Phadungbut P, Borisut P (2021) Equilibrium and kinetics of CO2 adsorption by coconut shell activated carbon impregnated with sodium hydroxide. Processes 9(201):2–23

    Google Scholar 

  13. Yoon HJ, Lee KB (2019) Introduction of chemically bonded zirconium oxide in CaO-based high-temperature CO2 sorbents for enhanced cyclic sorption. Chem Eng J 355:850–857

    Article  CAS  Google Scholar 

  14. Kwon S, Lee SG, Chung E, Lee WR (2015) CO2 adsorption on H2O-saturated BaO(100) and induced barium surface dissociation. Bull Korean Chem Soc 36:11–16

    Article  CAS  Google Scholar 

  15. Elvira G-B, Francisco G-C, Víctor S-M, Alberto M-LR (2017) MgO-based adsorbents for CO2 adsorption: influence of structural and textural properties on the CO2 adsorption performance. J Environ Sci 57:418–428

    Article  CAS  Google Scholar 

  16. Li L, Shi Z, Gao B, Hu X, Wang Z (2016) Electrochemical conversion of CO2 to carbon and oxygen in LiCl–Li2O melts. Electrochim Acta 190:655–658

    Article  CAS  Google Scholar 

  17. Nair S, Raghavan R (2021) A kinetic study of CO2 sorption/desorption of lithium silicate synthesized through a ball milling method. Thermochim Acta 699:178918–179010

    Article  CAS  Google Scholar 

  18. Rangwala HA (1996) Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J Memb Sci 112:229–240

    Article  CAS  Google Scholar 

  19. Xiong R, Ida J, Lin YS (2003) Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chem Eng Sci 58:4377–4385

    Article  CAS  Google Scholar 

  20. Pfeiffer H, Lima E, Bosch P (2006) Lithium−sodium metazirconate solid solutions, Li2-xNaxZrO3 (0 ≤ x ≤ 2): a hierarchical architecture. Chem Mater 18:2642–2647

    Article  CAS  Google Scholar 

  21. Xiao Q, Liu Y, Zhong Y, Zhu W (2011) A citrate sol–gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. J Mater Chem 21:3838–3842

    Article  CAS  Google Scholar 

  22. Alcérreca-Corte I, Fregoso-Israel E, Pfeiffer H (2008) CO2 absorption on Na2ZrO3: a kinetic analysis of the chemisorption and diffusion processes. J Phys Chem C 112:6520–6525

    Article  Google Scholar 

  23. Radfarnia HR, Iliuta MC (2012) Application of surfactant-template technique for preparation of sodium zirconate as high temperature CO2 sorbent. Sep Purif Technol 93:98–106

    Article  CAS  Google Scholar 

  24. Ooi KM, Chai SP, Mohamed AR, Mohammadi M (2015) Effects of sodium precursors and gelling agents on CO2 sorption performance of sodium zirconate. Asia-Pacific J Chem Eng 10(4):565–579

    Article  CAS  Google Scholar 

  25. Barraza-Jiménez D, Collins-Martínez V, Reyes-Rojas A, Guzmán-Velderraín V, López-Ortiz A (2004) The effect of Li as a dopant in Na2O3Zr high temperature CO2 acceptor. https://folk.ntnu.no/skoge/prost/proceedings/aiche-2004/pdffiles/papers/263d.pdf. Accessed 12 October 2023

  26. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731

    Article  CAS  Google Scholar 

  27. Nathanael AJ, Kannaiyan K, Kunhiraman AK, Ramakrishna S, Kumaravel V (2021) Global opportunities and challenges on net-zero CO2 emissions towards a sustainable future. React Chem Eng 6:2226–2247

    Article  CAS  Google Scholar 

  28. Salvi BL, Jindal S (2019) Recent developments and challenges ahead in carbon capture and sequestration technologies. SN Appl Sci 1:885–920

    Article  CAS  Google Scholar 

  29. Global Monitoring Laboratory (2021) Earth system research laboratories trends in atmospheric carbon dioxide. https://gml.noaa.gov/ccgg/trends/. Accessed 12 October 2023

  30. Paramsothy M (2020) Alleviating climate change and pollution with nanomaterials. Nanomaterials 10:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leonzio G, Zondervan E, Foscolo PU (2019) Methanol production by CO2 hydrogenation: analysis and simulation of reactor performance. Int J Hydrogen Energy 44:7915–7933

    Article  CAS  Google Scholar 

  32. Cui X, Kær SK (2020) A comparative study on three reactor types for methanol synthesis from syngas and CO2. Chem Eng J 393:124632–124711

    Article  CAS  Google Scholar 

  33. Sorcar S et al (2019) CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. Energy Environ Sci 12:2685–2696

    Article  CAS  Google Scholar 

  34. Zhang Y et al (2019) Recent advances in lithium containing ceramic based sorbents for high-temperature CO2 capture. J Mater Chem A 7:7962–8005

    Article  CAS  Google Scholar 

  35. Hao G-P, Li W-C, Lu A-H (2011) Novel porous solids for carbon dioxide capture. J Mater Chem 21:6447–6451

    Article  CAS  Google Scholar 

  36. Wang J et al (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci 7:3478–3518

    Article  CAS  Google Scholar 

  37. Bastow TJ, Hobday ME, Smith ME, Whitfield HJ (1994) Structural characterisation of Na2ZrO3. Solid State Nucl Magn Reson 3:49–57

    Article  CAS  PubMed  Google Scholar 

  38. Sandoval-Diaz A, Pfeiffer H (2008) Effects of potassium doping on the composition, structure and carbon dioxide chemisorption of Na2ZrO3. Rev Mex física 54:65–68

    CAS  Google Scholar 

  39. Shivakumara C, Saraf R, Halappa P (2016) White luminescence in Dy3+ doped BiOCl phosphors and their Judd-Ofelt analysis. Dye Pigment 126:154–164

    Article  CAS  Google Scholar 

  40. Goldschmidt VM (1927) Krystallbau und chemische Zusammensetzung. Berichte der Dtsch Chem Gesellschaft (A B Series) 60:1263–1296

    Google Scholar 

  41. Li Z et al (2016) Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater 28:284–292

    Article  Google Scholar 

  42. Ji G, Memon MZ, Zhuo H, Zhao M (2017) Experimental study on CO2 capture mechanisms using Na2ZrO3 sorbents synthesized by soft chemistry method. Chem Eng J 313:646–654

    Article  CAS  Google Scholar 

  43. Jubu PR et al (2022) Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV–vis optical diffuse reflectance data. Results Opt 9:100273–100277

    Article  Google Scholar 

  44. Kalu O et al (2023) Structural and optical characterization of RF sputtered CdMgZnO thin film with different Cd concentrations. Mater Chem Phys 308:128314–128411

    Article  CAS  Google Scholar 

  45. Kaviyarasu K, Devarajan PA, Xavier SSJ, Thomas SA, Selvakumar S (2012) One pot synthesis and characterization of cesium doped SnO2 nanocrystals via a hydrothermal process. J Mater Sci Technol 28:15–20

    Article  CAS  Google Scholar 

  46. Asha A B, Narain R (2020) Nanomaterials properties. In: Narain R (ed) Polymer science and nanotechnology, 1st edn. Elsevier, Canada, pp 343–359

  47. Singh KA, Pathak LC, Roy SK (2007) Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process. Ceram Int 33:1463–1468

    Article  CAS  Google Scholar 

  48. Zhang J et al (2018) Oxygen vacancy-rich mesoporous ZrO2 with remarkably enhanced visible-light photocatalytic performance. Sol Energy Mater Sol Cells 182:113–120

    Article  CAS  Google Scholar 

  49. Reddy CV, Babu B, Reddy IN, Shim J (2018) Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity. Ceram Int 44:6940–6948

    Article  CAS  Google Scholar 

  50. Shkerin SN et al (2021) Raman spectroscopy of SrZrO3 based proton conducting electrolyte: effect of Y-doping and Sr-nonstoichiometry. Int J Hydrogen Energy 46:17007–17018

    Article  CAS  Google Scholar 

  51. Nathan-Abutu A, Ahemen I, Reyes-Rojas A (2023) Structural and optical investigation of novel Sr1-xNa2xZrO3 perovskite nanoparticles. Phys B Condens Matter 653:414655–414711

    Article  CAS  Google Scholar 

  52. Das S, Yang C-Y, Lu C-H (2013) Structural and optical properties of tunable warm-white light-emitting ZrO2:Dy3+-Eu3+ nanocrystals. J Am Ceram Soc 96:1602–1609

    Article  CAS  Google Scholar 

  53. Santillán-Reyes GG, Pfeiffer H (2011) Analysis of the CO2 capture in sodium zirconate (Na2ZrO3). Effect of the water vapor addition. Int J Greenh Gas Control 5:1624–1629

    Article  Google Scholar 

  54. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. John Wiley Sons

    Google Scholar 

  55. Mendoza-Nieto JA, Pfeiffer H (2016) Thermogravimetric study of sequential carbonation and decarbonation processes over Na2ZrO3 at low temperatures (30–80 °C): relative humidity effect. RSC Adv 6:66579–66588

    Article  CAS  Google Scholar 

  56. Madhusudhana HC et al (2016) Effect of fuels on conductivity, dielectric and humidity sensing properties of ZrO2 nanocrystals prepared by low temperature solution combustion method. J Asian Ceram Soc 4:309–318

    Article  Google Scholar 

  57. Lara-García HA, Pfeiffer H (2017) High and efficient Li2CuO2-CO2 chemisorption using different partial pressures and enhancement produced by the oxygen addition. Chem Eng J 313:1288–1294

    Article  Google Scholar 

  58. Martínez-dlCruz L, Pfeiffer H (2012) Microstructural thermal evolution of the Na2CO3 phase produced during a Na2ZrO3–CO2 chemisorption process. J Phys Chem C 116:9675–9680

    Article  Google Scholar 

  59. Zhou D et al (2022) The effect of Na2ZrO3 synthesis method on the CO2 sorption kinetics at high temperature. Carbon Capture Sci Technol 3:100050–100058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Humanidades Ciencias y Technologias (CONAHCYT), Mexico (Ref. No.: 1114163), for the Ph.D. research scholarship to Nathan A. Abutu. The author thanks the staff of the Centro de Investigacion en Materiales Avanzados (CIMAV) Chihuahua, S.C, Mexico, for the characterization and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reyes-Rojas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Nonradiative multiphonon relaxation of excited activator ions.

• Nanomaterials are an important integral in solving.

• Increase of sorption and regeneration conversion.

• Optical absorbance spectra of the as-synthesized.

• Nitrogen physisorption analysis for specific surface area.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathan-Abutu, A., Lardizabal-Gutierrez, D. & Reyes-Rojas, A. Evidence of novel crystal structure in cesium-doped sodium zirconate perovskite and its impact in optical and CO2 sorption properties. J Nanopart Res 26, 109 (2024). https://doi.org/10.1007/s11051-024-06019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-06019-x

Keywords

Navigation