Skip to main content
Log in

Annealing-induced oxidation state transition, crystal formation, optical properties, and photocatalytic activity of vanadium oxide nanoparticles

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Vanadium has various oxidation states and multiple crystalline phases that make it interesting for various applications. The oxidation state transition and crystal formation of vanadium oxide (VOx) were affected by growth conditions and annealing temperatures. In this study, VOx nanopowders were prepared by hydrothermal method, and annealing-induced characterizations of VOx were analyzed. The morphologies, structures, composition, and optical properties of VOx were characterized by SEM, XRD, EDX, FTIR, and UV–Vis spectroscopy. The results demonstrated that the annealing temperature significantly affected the transition of oxide states from the VOOH and VOx clusters to V2O5 nanoparticles and the crystal size from amorphous to 38.96 nm which led to an increase in the optical band gap from 2.28, 2.26 to 2.39 and 2.38 eV as increasing calcination temperature and enhanced photocatalytic activity under sunlight irradiation. The energy dispersive X-ray (EDX) spectra reveal that the percentage molar mass between vanadium and oxygen changes due to the oxidation state transition and the formation of oxygen vacancies in V2O5. The relation between nanoparticle size, oxidation state, and crystal size was clarified by comparing EDX and XRD spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Aslam M, Ismail IMI, Salah N et al (2015) Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols. J Hazard Mater 286:127–135. https://doi.org/10.1016/j.jhazmat.2014.12.022

    Article  CAS  PubMed  Google Scholar 

  2. Basu SS, Donode SK, Sengupta S, Basu JK (2022a) Boosting charge migration in V2O5 nanorods by niobium doping for enhanced photocatalytic activity. New J Chem 46:17527–17539. https://doi.org/10.1039/D2NJ02428D

    Article  CAS  Google Scholar 

  3. Basu SS, Donode SK, Sengupta S, Basu JK (2022b) Boosting charge migration in V2O5 nanorods by niobium doping for enhanced photocatalytic activity. New J Chem 46:17527

    Article  CAS  Google Scholar 

  4. Becker M, Kessler J, Kuhl F, Benz SL, Chen L, Polity A, Klar PJ, Chatterjee S (2024) Phase control of multivalent vanadium oxides VOx by ion-beam sputter-deposition. Phys Status Solidi 219:2100828

    Article  Google Scholar 

  5. Chakraborty S, Petel BE, Schreiber E, Matson EM (2021) Atomically precise vanadium-oxide clusters. Nanoscale Adv 3:1293. https://doi.org/10.1039/d0na00877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaudhary H, Chaudhary K, Zulfiqar S et al (2021) Fabrication of reduced graphene oxide supported Gd3+ doped V2O5 nanorod arrays for superior photocatalytic and antibacterial activities. Ceram Int 47:32521–32533. https://doi.org/10.1016/j.ceramint.2021.08.146

    Article  CAS  Google Scholar 

  7. Ding Y, Ren G, Wang G et al (2020) V2O5 Nanobelts mimick tandem enzymes to achieve nonenzymatic online monitoring of glucose in living rat brain. Anal Chem 92:4583–4591. https://doi.org/10.1021/acs.analchem.9b05872

    Article  CAS  PubMed  Google Scholar 

  8. Fauzi M, Esmaeilzadeh F, Mowla D, Sahraeian N (2021) The effect of various capping agents on V2O5 morphology and photocatalytic degradation of dye. J Mater Sci Mater Electron 32:10473–10490

    Article  CAS  Google Scholar 

  9. Gavhane DS, Sontakke AD, van Huis MA (2023) Thermolysis-driven growth of vanadium oxide nanostructures revealed by in situ transmission electron microscopy: implications for battery applications. ACS Appl Nano Mater 6:7280–7289. https://doi.org/10.1021/acsanm.3c00397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gonçalves JM, Ireno Da Silva M, Angnes L, Araki K (2020) Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: a review. J Mater Chem A 8:2171–2206

    Article  Google Scholar 

  11. Guan S, Gaudon M, Rougier A et al (2022) VO2 films obtained by V2O5 nanoparticle suspension reduction. Opt Mater (Amst) 127:112117

    Article  CAS  Google Scholar 

  12. Hu P, Hu P, Vu TD, Li M, Wang S, Ke Y, Zeng X, Mai L, Long Y (2023) Vanadium oxide: phase diagrams, structures, synthesis, and applications. Chem Rev 123:4353–4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jalil MA, Khan MNI, Mandal SK et al (2023) Impact of reaction temperatures on the particle size of V2O5 synthesized by facile hydrothermal technique and photocatalytic efficacy in dye degradation. AIP Adv 13:015010. https://doi.org/10.1063/5.0125200

    Article  CAS  Google Scholar 

  14. Jenifer A, Sriram S (2023) Enhanced photocatalytic organic dye degradation activities of pristine and Zn-doped V2O5 nanoparticles. Appl Surf Sci 611:155629. https://doi.org/10.1016/j.apsusc.2022.155629

    Article  CAS  Google Scholar 

  15. Jenifer A, Sastri MLS, Sriram S (2021) Photocatalytic dye degradation of V2O5 nanoparticles—an experimental and DFT analysis. Optik (Stuttg) 243:167148

    Article  CAS  Google Scholar 

  16. Kabir MH, Hossain MZ, Jalil MA et al (2024) The efficacy of rare-earth doped V2O5 photocatalyst for removal of pollutants from industrial wastewater. Opt Mater (Amst) 147:114724

    Article  CAS  Google Scholar 

  17. Kishor CHR, Ruksana M, Amisha T, Aneesh P (2023) Structural, optical properties of V2O5 and NiO thin films and fabrication of V2O5/NiO heterojunction. Phys Scr 98:095957. https://doi.org/10.1088/1402-4896/acf16c

    Article  Google Scholar 

  18. Lan Y, Yang G, Li Y et al (2022) Optical properties of V2O5 thin films on different substrates and femtosecond laser-induced phase transition studied by pump–probe method. Nanomaterials 12:330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le TK, Kang M, Kim SW (2019a) A review on the optical characterization of V2O5 micro-nanostructures. Ceram Int 45:15781–15798. https://doi.org/10.1016/j.ceramint.2019.05.339

    Article  CAS  Google Scholar 

  20. Le TK, Kang M, Kim SW (2019b) Morphology engineering, room-temperature photoluminescence behavior, and sunlight photocatalytic activity of V2O5 nanostructures. Mater Charact 153:52–59. https://doi.org/10.1016/j.matchar.2019.04.046

    Article  CAS  Google Scholar 

  21. Le TK, Kang M, Tran VT, Kim SW (2019c) Relation of photoluminescence and sunlight photocatalytic activities of pure V2O5 nanohollows and V2O5/RGO nanocomposites. Mater Sci Semicond Process 100:159–166. https://doi.org/10.1016/j.mssp.2019.04.047

    Article  CAS  Google Scholar 

  22. Le TK, Pham PV, Dong C-L et al (2022) Recent advances in vanadium pentoxide (V2O5) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives. J Mater Chem C 10:4019–4071. https://doi.org/10.1039/d1tc04872d

    Article  CAS  Google Scholar 

  23. Lee M-H, Kalcheim Y, del Valle J, Schuller IK (2021) Controlling metal–insulator transitions in vanadium oxide thin films by modifying oxygen stoichiometry. ACS Appl Mater Interfaces 13:887–896. https://doi.org/10.1021/acsami.0c18327

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Chen S, Duan W, Nan Y, Donghai Ding GX (2023) Research progress of vanadium pentoxide photocatal. RSC Adv 13:22945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma X, Li D, Jin H et al (2023) Urchin-like band-matched Fe2O3@In2S3 hybrid as an efficient photocatalyst for CO2 reduction. J Colloid Interface Sci 648:1025–1033

    Article  CAS  PubMed  Google Scholar 

  26. Ma X, Zheng J, Jin H et al (2024) Deep understanding the formation of hollow ZnO@ZnS core-sheath heterojunction towards efficient CO2 photoreduction. Sep Purif Technol 329:125228

    Article  CAS  Google Scholar 

  27. Mandal RK, Kundu S, Sain S, Pradhan SK (2019) Enhanced photocatalytic performance of V2O5-TiO2 nanocomposites synthesized by mechanical alloying with morphological hierarchy. New J Chem 43:2804–2816

    Article  CAS  Google Scholar 

  28. Mjejri I, Rougier A, Gaudon M (2017) Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorg Chem 56:1734–1741. https://doi.org/10.1021/acs.inorgchem.6b02880

    Article  CAS  PubMed  Google Scholar 

  29. Navas D (2023) Hydrothermal synthesis of vanadium oxide microstructures with mixed oxidation states. Reactions 4:1–25

    Article  CAS  Google Scholar 

  30. Neema S, Abhijith AR, Panwar OS et al (2022) Tunable thermochromism in V 2O5 films deposited by cathodic vacuum arc method by tailoring the oxygen deficiency. J Phys Conf Ser 2267:012009. https://doi.org/10.1088/1742-6596/2267/1/012009

    Article  CAS  Google Scholar 

  31. Neha TGR, Das P et al (2024) Ultrafast photodegradation of methylene blue dye and supercapacitor applications of flower like hydrothermal synthesized V2O5 nano -structures on. J Phys Chem Solids 184:111673

    Article  CAS  Google Scholar 

  32. Rana A, Yadav A, Gupta G, Rana A (2023) Infrared sensitive mixed phase of V7O16 and V2O5 thin-films. RSC Adv 13:15334–15341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sajid MM, Shad NA, Javed Y, Khan SB, Zhange Z, Amin N, Zhai H (2020) Preparation and characterization of vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf Interface 19:100502

    Article  CAS  Google Scholar 

  34. Shafeeq KM, Athira VP, Kishor CHR, Aneesh PM (2020) Structural and optical properties of V2O5 nanostructures grown by thermal decomposition technique. Appl Phys A 126:586

  35. Sharma D, Faraz M, Kumar D et al (2022) Visible light activated V2O5/rGO nanocomposite for enhanced photodegradation of methylene blue dye and photoelectrochemical water splitting. Inorg Chem Commun 142:109657

    Article  CAS  Google Scholar 

  36. Wu T, Su J (2023) Controlling crystal structures of vanadium oxides via pH regulation and decoupling crystallographic perspective on zinc storage behaviors. Acta Mater 245:118663. https://doi.org/10.1016/j.actamat.2022.118663

    Article  CAS  Google Scholar 

  37. Wu G, Du K, Xia C et al (2005) Optical absorption edge evolution of vanadium pentoxide films during lithium intercalation. Thin Solid Films 485:284–289. https://doi.org/10.1016/j.tsf.2005.03.039

    Article  CAS  Google Scholar 

  38. Yadav AA, Hunge YM, Kang SW, et al (2023) Enhanced photocatalytic degradation activity using the V2O5/RGO composite. Nanomater 13:338

  39. Zhong W, Huang J, Liang S et al (2020) New prelithiated V2O5 superstructure for lithium-ion batteries with long cycle life and high power. ACS Energy Lett 5:31–38. https://doi.org/10.1021/acsenergylett.9b02048

    Article  CAS  Google Scholar 

  40. Zhu Q, Luo Y, Yang K et al (2023) Construction of spinel/perovskite heterojunction for boosting photocatalytic performance for polyacrylamide. Catalysts 13:1424

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the University of Science, VNU-HCM under grant number T2023-56.

Author information

Authors and Affiliations

Authors

Contributions

Doan Huu Nhan: conceptualization and writing—original draft; Huynh Ngoc Cong: formal analysis and investigation; Nguyen Ngoc Thanh Nha: formal analysis and investigation; Le Phuoc Hai: formal analysis and investigation; Nguyen Trong Toan: formal analysis and investigation; Hoang Luong Cuong: formal analysis and investigation; Sokwon Kim: writing—review and editing Phuong; V. Pham: writing—review and editing; Le T. Lu: writing—review and editing; Le Van Hieu: writing—review and editing; Top Khac Le: supervision, conceptualization, writing—review and editing.

Corresponding author

Correspondence to Top Khac Le.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nhan, D.H., Cong, H.N., Nha, N.N.T. et al. Annealing-induced oxidation state transition, crystal formation, optical properties, and photocatalytic activity of vanadium oxide nanoparticles. J Nanopart Res 26, 90 (2024). https://doi.org/10.1007/s11051-024-05994-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05994-5

Keywords

Navigation