Skip to main content
Log in

Potential paradigm of proteins and polypeptides-based nanostructures in drug delivery and management of maladies: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The current review aims to uphold all the attributes of protein-based nanostructures and their applications in therapeutics. Nanostructures have successfully revolutionized the era of novel drug delivery systems. Owing to the paramount advantages of nanoscale preparations, they have gained importance exponentially in recent years. Among the varied range of nanostructures, protein-based nanostructures have acquired a predominant orientation. Being a natural biomolecule, proteins have zero levels of toxicity, biodegradability, and biocompatibility. The present scenario states that the fourth generation of nanomedicines is being formulated which implements biomolecule nano-vectors that can exhibit the virtues of target specificity, multifunctionality, and stimuli-responsiveness. By virtue of possessing these attributes, apart from being able to partake in complex supramolecular assemblage, proteins have proven to be the best approach in the development of nanoscale structures. The review studies the supremacy of various protein-based nanoparticles over other nanostructures, their mode of preparation, efficacious delivery of a plethora of drugs, and their implementation in the field of nanomedicines along with various characterization techniques. As our insightfulness of protein-based nanoparticles expands, they grip boundless potential for revolutionizing drug delivery and renovating the treatment scenario for a widespread range of disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATF:

Activating tumor factor

ATRP:

Atom transfer radical polymerization

BLG:

β-Lactoglobulin

BLG-NCA:

Alpha Benzyl-L-glutamate-N-carboxyanhydride

BSA:

Bovine serum albumin

CD8 + :

Cluster of differentiation 8

ECM:

Extracellular matrix

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

ELP:

Elastin-like polypeptides

EPR:

Enhanced permeability and retention

Fbg:

Fibrinogen

FKBP12:

FK Binding protein 12

GLUT4:

Glucose transporter type 4

GT:

Gantrez® AN-thiamine conjugate

H ferritin:

Heavy ferritin

HEPT:

HA-EDA-PASP-Tyr

HFLS-RA:

Human fibroblast–like synoviocyte-rheumatoid arthritis

HFLS-OA:

Human fibroblast–like synoviocyte-osteoarthritis

HSA:

Human serum albumin

IC50 :

Half-maximal inhibitory concentration

IFN-γ:

Interferon gamma

IgGs:

Immunoglobulin G

IL-4:

Interleukin-4

MCT:

Microcrystalline tyrosine

mPEG:

Methoxy poly(ethylene glycol)

Nab:

Nanoparticle albumin-bound

PEG:

Polyethylene glycol

PhENP:

PEGylated human α-elastin nanoparticle

PLG:

Poly(glutamic acid)

PLL:

Poly(α-L Lysine)

SA:

Sialic acid

SDF1:

Stromal cell-derived factor 1

TNF-α:

Tumor necrosis factor-alpha

TRAP:

Thrombospondin-related adhesive protein

VLP:

Virus-like protein

References

  1. Chen T, Ren L, Liu X et al (2018) DNA nanotechnology for cancer diagnosis and therapy. Int J Mol Sci 19:1671. https://doi.org/10.3390/ijms19061671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dewanjee S, Chakraborty P, Mukherjee B, De Feo V (2020) Plant-based antidiabetic nanoformulations: the emerging paradigm for effective therapy. Int J Mol Sci 21:2217. https://doi.org/10.3390/ijms21062217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaur J, Gulati M, Jha NK et al (2022) Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discov Today 27:1495–1512. https://doi.org/10.1016/j.drudis.2022.02.005

    Article  CAS  PubMed  Google Scholar 

  4. Khairnar SV, Pagare P, Thakre A et al (2022) Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics 14:1886. https://doi.org/10.3390/pharmaceutics14091886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27:1372. https://doi.org/10.3390/molecules27041372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bober Z, Bartusik-Aebisher D, Aebisher D (2022) Application of dendrimers in anticancer diagnostics and therapy. Molecules 27:3237. https://doi.org/10.3390/molecules27103237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McGuckin MB, Wang J, Ghanma R et al (2022) Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release 345:334–353. https://doi.org/10.1016/j.jconrel.2022.03.012

    Article  CAS  PubMed  Google Scholar 

  8. Jain N, Gupta E, Kanu NJ (2022) Plethora of carbon nanotubes applications in various fields – a state-of-the-art-review. Smart Sci 10:1–24. https://doi.org/10.1080/23080477.2021.1940752

    Article  Google Scholar 

  9. Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 5:1593–1615. https://doi.org/10.1007/s42247-021-00335-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang W, Sun J, Guo B et al (2020) Fabrication of piezoelectric nano-ceramics via stereolithography of low viscous and non-aqueous suspensions. J Eur Ceram Soc 40:682–688. https://doi.org/10.1016/j.jeurceramsoc.2019.10.033

    Article  CAS  Google Scholar 

  11. Liu Q, Sun Y, Cheng J, Guo M (2022) Development of whey protein nanoparticles as carriers to deliver soy isoflavones. LWT 155:112953. https://doi.org/10.1016/j.lwt.2021.112953

    Article  CAS  Google Scholar 

  12. Sandra F, Khaliq NU, Sunna A, Care A (2019) Developing Protein-based nanoparticles as versatile delivery systems for cancer therapy and imaging. Nanomaterials 9:1329. https://doi.org/10.3390/nano9091329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao S, Xu S, Wang H et al (2019) Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech 20:190. https://doi.org/10.1208/s12249-019-1325-z

    Article  CAS  PubMed  Google Scholar 

  14. Gil AG, Irache JM, Peñuelas I et al (2017) Toxicity and biodistribution of orally administered casein nanoparticles. Food Chem Toxicol 106:477–486. https://doi.org/10.1016/j.fct.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  15. Malekzad H, Mirshekari H, Sahandi Zangabad P et al (2018) Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit Rev Biotechnol 38:47–67. https://doi.org/10.1080/07388551.2017.1312267

    Article  CAS  PubMed  Google Scholar 

  16. Ding S, Zhang N, Lyu Z et al (2021) Protein-based nanomaterials and nanosystems for biomedical applications: a review. Mater Today 43:166–184. https://doi.org/10.1016/j.mattod.2020.11.015

    Article  CAS  Google Scholar 

  17. Sahoo N, Sahoo RK, Biswas N et al (2015) Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol 81:317–331. https://doi.org/10.1016/j.ijbiomac.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  18. Freitag TL, Podojil JR, Pearson RM et al (2020) Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. Gastroenterology 158:1667-1681.e12. https://doi.org/10.1053/j.gastro.2020.01.045

    Article  CAS  PubMed  Google Scholar 

  19. Wu X, Hu Q, Liang X, Fang S (2022) Fabrication of colloidal stable gliadin-casein nanoparticles for the encapsulation of natamycin: molecular interactions and antifungal application on cherry tomato. Food Chem 391:133288. https://doi.org/10.1016/j.foodchem.2022.133288

    Article  CAS  PubMed  Google Scholar 

  20. Tang CH (2019) Nanostructured soy proteins: fabrication and applications as delivery systems for bioactives (a review). Food Hydrocoll 91:92–116. https://doi.org/10.1016/j.foodhyd.2019.01.012

    Article  CAS  Google Scholar 

  21. Yuan H, Guo H, Luan X et al (2020) Albumin nanoparticle of paclitaxel (Abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol Pharm 17:2275–2286. https://doi.org/10.1021/acs.molpharmaceut.9b01221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pei Q, Hu X, Zheng X et al (2019) Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy. Nano Res 12:877–887. https://doi.org/10.1007/s12274-019-2318-7

    Article  CAS  Google Scholar 

  23. Ertugen E, Tunçel A, Yurt F (2020) Docetaxel loaded human serum albumin nanoparticles; synthesis, characterization, and potential of nuclear imaging of prostate cancer. J Drug Deliv Sci Technol 55:101410. https://doi.org/10.1016/j.jddst.2019.101410

    Article  CAS  Google Scholar 

  24. Li Y, Wang X, Yan J et al (2019) Nanoparticle ferritin-bound erastin and rapamycin: a nanodrug combining autophagy and ferroptosis for anticancer therapy. Biomater Sci 7:3779–3787. https://doi.org/10.1039/C9BM00653B

    Article  CAS  PubMed  Google Scholar 

  25. Hatami E, Jaggi M, Chauhan SC, Yallapu MM (2020) Gambogic acid: a shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta - Rev Cancer 1874:188381. https://doi.org/10.1016/j.bbcan.2020.188381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang P, Tao H, Yu L et al (2020) Developing protein arginine methyltransferase 1 (PRMT1) inhibitor TC-E-5003 as an antitumor drug using INEI drug delivery systems. Drug Deliv 27:491–501. https://doi.org/10.1080/10717544.2020.1745327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Behrouz H, Esfandyari-Manesh M, Khoeeniha MK et al (2016) Enhanced cytotoxicity to cancer cells by codelivery and controlled release of paclitaxel-loaded sirolimus-conjugated albumin nanoparticles. Chem Biol Drug Des 88:230–240. https://doi.org/10.1111/cbdd.12750

    Article  CAS  PubMed  Google Scholar 

  28. Rajangam T, An SA (2013) Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomed 8:3641–3662. https://doi.org/10.2147/ijn.s43945

    Article  Google Scholar 

  29. Alessio Incocciati, Kubeš J, Piacentini R, et al (2023) Hydrophobicity‐enhanced ferritin nanoparticles for efficient encapsulation and targeted delivery of hydrophobic drugs to tumor cells. Protein Science 32: https://doi.org/10.1002/pro.4819

  30. Song N, Zhang J, Zhai J et al (2021) Ferritin: a multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery. Acc Chem Res 54:3313–3325. https://doi.org/10.1021/acs.accounts.1c00267

    Article  CAS  PubMed  Google Scholar 

  31. Carvalho JA, da Silva AA, Tedesco AC et al (2019) Functionalized photosensitive gelatin nanoparticles for drug delivery application. J Biomater Sci Polym Ed 30:508–525. https://doi.org/10.1080/09205063.2019.1580664

    Article  CAS  PubMed  Google Scholar 

  32. Georgilis E, Abdelghani M, Pille J et al (2020) Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 586:119537. https://doi.org/10.1016/j.ijpharm.2020.119537

    Article  CAS  PubMed  Google Scholar 

  33. Xie W, Liu P, Gao F et al (2022) Platelet–neutrophil hybrid membrane-coated gelatin nanoparticles for enhanced targeting ability and intelligent release in the treatment of non-alcoholic steatohepatitis. Nanomedicine: Nanotechnology. Biol Med 42:102538–102538. https://doi.org/10.1016/j.nano.2022.102538

    Article  CAS  Google Scholar 

  34. Han X, He J, Wang Z et al (2021) Fabrication of silver nanoparticles/gelatin hydrogel system for bone regeneration and fracture treatment. Drug Delivery 28:319–324. https://doi.org/10.1080/10717544.2020.1869865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo L, Lin T-Y, Yao C et al (2019) Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. J Colloid Interface Sci 536:112–126. https://doi.org/10.1016/j.jcis.2018.10.041

    Article  CAS  PubMed  Google Scholar 

  36. Zhu W, Dong Y, Xu P et al (2022) A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater 154:212–230. https://doi.org/10.1016/j.actbio.2022.10.038

    Article  CAS  PubMed  Google Scholar 

  37. Picchio ML, Cuggino JC, Nagel G et al (2018) Crosslinked casein-based micelles as a dually responsive drug delivery system. Polym Chem 9:3499–3510. https://doi.org/10.1039/C8PY00600H

    Article  CAS  Google Scholar 

  38. Elzoghby A, Helmy S, Elgindy, (2013) Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int J Nanomedicine. https://doi.org/10.2147/IJN.S40674

    Article  PubMed  PubMed Central  Google Scholar 

  39. Barick KC, Tripathi A, Dutta B et al (2020) Curcumin encapsulated casein nanoparticles: enhanced bioavailability and anticancer efficacy. J Pharm Sci. https://doi.org/10.1016/j.xphs.2020.12.011

    Article  PubMed  Google Scholar 

  40. Wang M, Zhang Y, Fei Z et al (2022) Hyaluronan oligosaccharides-coated paclitaxel-casein nanoparticles with enhanced stability and antitumor activity. Nutrients 14:3888. https://doi.org/10.3390/nu14193888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Madan JR, Ansari IN, Dua K, Awasthi R (2020) Formulation and in vitro evaluation of casein nanoparticles as carrier for celecoxib. Advanced Pharmaceutical Bulletin 10:408–417. https://doi.org/10.34172/apb.2020.049

  42. Li K, Zhang Y, Hao X et al (2022) Improved stability and in vitro anti-arthritis bioactivity of curcumin–casein nanoparticles by ultrasound-driven encapsulation. Nutrients 14:5192. https://doi.org/10.3390/nu14235192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdelsalam AM, Somaida A, Ayoub AM et al (2021) Surface-tailored zein nanoparticles: strategies and applications. Pharmaceutics 13:1354. https://doi.org/10.3390/pharmaceutics13091354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inchaurraga L, Martínez-López AL, Abdulkarim M et al (2019) Modulation of the fate of zein nanoparticles by their coating with a Gantrez® AN-thiamine polymer conjugate. Int J Pharm X 1:100006. https://doi.org/10.1016/j.ijpx.2019.100006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu X, Wu H, Hu H et al (2020) Zein nanoparticles as nontoxic delivery system for maytansine in the treatment of non-small cell lung cancer. Drug Deliv 27:100–109. https://doi.org/10.1080/10717544.2019.1704942

    Article  CAS  PubMed  Google Scholar 

  46. Shen P, Zhou F, Zhang Y et al (2020) Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis. Food Hydrocoll 105:105844. https://doi.org/10.1016/j.foodhyd.2020.105844

    Article  Google Scholar 

  47. Qian X, Ge L, Yuan K et al (2019) Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics 9:7417–7430. https://doi.org/10.7150/thno.33470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng X, Zeng X, Li D et al (2019) TPGS-grafted and acid-responsive soy protein nanogels for efficient intracellular drug release, accumulation, penetration in 3D tumor spheroids of drug-resistant cancer cells. Mater Sci Eng C 102:863–875. https://doi.org/10.1016/j.msec.2019.05.017

    Article  CAS  Google Scholar 

  49. Pujara N, Giri R, Wong KY et al (2021) pH – responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. J Colloid Interface Sci 589:45–55. https://doi.org/10.1016/j.jcis.2020.12.054

    Article  CAS  PubMed  Google Scholar 

  50. Zheng M, Pan M, Zhang W et al (2021) Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact Mater 6:1878–1909. https://doi.org/10.1016/j.bioactmat.2020.12.001

    Article  CAS  PubMed  Google Scholar 

  51. Wu Y, Xia G, Zhang W et al (2020) Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. J Mater Chem B 8:9173–9196. https://doi.org/10.1039/D0TB01916J

    Article  CAS  PubMed  Google Scholar 

  52. Wang S, Huang W, Feng Z et al (2023) Laccase-mediated formation of hydrogels based on silk-elastin-like protein polymers with ultra-high molecular weight. Int J Biol Macromol 231:123239. https://doi.org/10.1016/j.ijbiomac.2023.123239

    Article  CAS  PubMed  Google Scholar 

  53. Sarangthem V, Cho EA, Bae SM et al (2013) Construction and application of elastin like polypeptide containing IL-4 receptor targeting peptide. PLoS ONE 8:e81891. https://doi.org/10.1371/journal.pone.0081891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ingrole RS, Tao W, Tripathy JN, Gill HS (2014) Synthesis and immunogenicity assessment of elastin-like polypeptide-M2e construct as an influenza antigen. Nano Life 4:1450004. https://doi.org/10.1142/S1793984414500044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shah M, Edman MC, Janga SR et al (2013) A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjögren’s syndrome. J Control Release 171:269–279. https://doi.org/10.1016/j.jconrel.2013.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen L, Zhou P, Wang YM et al (2024) Supramolecular nanoparticles based on elastin-like peptides modified capsid protein as drug delivery platform with enhanced cancer chemotherapy efficacy. Int J Biol Macromol 256:128107–128107. https://doi.org/10.1016/j.ijbiomac.2023.128107

    Article  CAS  PubMed  Google Scholar 

  57. Milligan JJ, Saha S, Jenkins IC, Chilkoti A (2022) Genetically encoded elastin-like polypeptide nanoparticles for drug delivery. Curr Opin Biotechnol 74:146–153. https://doi.org/10.1016/j.copbio.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  58. Duc Anh Le, Vüsala İbrahimova, Wu H, et al (2023) Light‐responsive elastin‐like peptide‐based targeted nanoparticles for enhanced spheroid penetration. Angewandte Chemie Intl Ed 62: https://doi.org/10.1002/anie.202300511

  59. Choi JS, Yang H-J, Kim BS et al (2009) Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release 139:2–7. https://doi.org/10.1016/j.jconrel.2009.05.034

    Article  CAS  PubMed  Google Scholar 

  60. Kim JD, Jung YJ, Woo CH et al (2017) Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery. Colloids Surfaces B Biointerfaces 149:122–129. https://doi.org/10.1016/j.colsurfb.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  61. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF (2017) Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin Immunol 34:123–132. https://doi.org/10.1016/j.smim.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  62. Schädler J, Sigrist B, Meier SM et al (2019) Virus-like particles in a new vaccination approach against infectious laryngotracheitis. J Gen Virol 100:1013–1026. https://doi.org/10.1099/jgv.0.001272

    Article  CAS  PubMed  Google Scholar 

  63. Yu H, Tang Z, Li M et al (2016) Cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for potential cancer therapy: preparation, in vitro and in vivo evaluation. J Biomed Nanotechnol 12:69–78. https://doi.org/10.1166/jbn.2016.2152

    Article  CAS  PubMed  Google Scholar 

  64. Li Q, Fu D, Zhang J et al (2021) Poly(aspartic acid)-based pH-responsive targeting co-delivery nanoparticles. J Biomater Appl 36:579–591. https://doi.org/10.1177/0885328220988071

    Article  CAS  PubMed  Google Scholar 

  65. Hong S, Choi DW, Kim HN et al (2020) Protein-based nanoparticles as drug delivery systems. Pharmaceutics 12:604. https://doi.org/10.3390/pharmaceutics12070604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang T, Xu J, Chen J et al (2021) Protein nanoparticles for Pickering emulsions: a comprehensive review on their shapes, preparation methods, and modification methods. Trends Food Sci Technol 113:26–41. https://doi.org/10.1016/j.tifs.2021.04.054

    Article  CAS  Google Scholar 

  67. Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int 2014:1–12. https://doi.org/10.1155/2014/180549

    Article  CAS  Google Scholar 

  68. Verma D, Gulati N, Kaul S et al (2018) Protein based nanostructures for drug delivery. J Pharm 2018:1–18. https://doi.org/10.1155/2018/9285854

    Article  CAS  Google Scholar 

  69. Vecchione D, Grimaldi AM, Forte E et al (2017) Hybrid core-shell (HyCoS) nanoparticles produced by complex coacervation for multimodal applications. Sci Rep 7:45121. https://doi.org/10.1038/srep45121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee SH, Heng D, Ng WK et al (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403:192–200. https://doi.org/10.1016/j.ijpharm.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  71. Arpagaus C (2019) PLA/PLGA nanoparticles prepared by nano spray drying. J Pharm Investig 49:405–426. https://doi.org/10.1007/s40005-019-00441-3

    Article  CAS  Google Scholar 

  72. Asadi M, Salami M, Hajikhani M et al (2021) Electrospray production of curcumin-walnut protein nanoparticles. Food Biophys 16:15–26. https://doi.org/10.1007/s11483-020-09637-9

    Article  Google Scholar 

  73. Huang S, Mansouri J, Le-Clech P et al (2022) A comprehensive review of electrospray technique for membrane development: current status, challenges, and opportunities. J Memb Sci 646:120248. https://doi.org/10.1016/j.memsci.2021.120248

    Article  CAS  Google Scholar 

  74. Reed NA, Raliya R, Tang R et al (2019) Electrospray functionalization of titanium dioxide nanoparticles with transferrin for Cerenkov radiation induced cancer therapy. ACS Appl Bio Mater 2:1141–1147. https://doi.org/10.1021/acsabm.8b00755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rodríguez-Félix F, Del-Toro-Sánchez CL, Javier Cinco-Moroyoqui F et al (2019) Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. J Food Sci 84:2883–2897. https://doi.org/10.1111/1750-3841.14803

    Article  CAS  PubMed  Google Scholar 

  76. Yang Z, Li P, Chen Y et al (2021) Construction of pH/glutathione responsive chitosan nanoparticles by a self-assembly/self-crosslinking method for photodynamic therapy. Int J Biol Macromol 167:46–58. https://doi.org/10.1016/j.ijbiomac.2020.11.141

    Article  CAS  PubMed  Google Scholar 

  77. Sabra SA, Elzoghby AO, Sheweita SA et al (2018) Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm 128:156–169. https://doi.org/10.1016/j.ejpb.2018.04.023

    Article  CAS  PubMed  Google Scholar 

  78. Ma Q, Gao Y, Sun W et al (2020) Self-assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Deliv 27:200–215. https://doi.org/10.1080/10717544.2020.1716878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carvalho JA, Abreu AS, Ferreira VTP et al (2018) Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. J Biomater Sci Polym Ed 29:1287–1301. https://doi.org/10.1080/09205063.2018.1456027

    Article  CAS  PubMed  Google Scholar 

  80. Jahanban-Esfahlan A, Dastmalchi S, Davaran S (2016) A simple improved desolvation method for the rapid preparation of albumin nanoparticles. Int J Biol Macromol 91:703–709. https://doi.org/10.1016/j.ijbiomac.2016.05.032

    Article  CAS  PubMed  Google Scholar 

  81. Joshi M, Prabhakar B (2021) Development of respirable rifampicin loaded bovine serum albumin formulation for the treatment of pulmonary tuberculosis. J Drug Deliv Sci Technol 61:102197. https://doi.org/10.1016/j.jddst.2020.102197

    Article  CAS  Google Scholar 

  82. von Storp B, Engel A, Boeker A et al (2012) Albumin nanoparticles with predictable size by desolvation procedure. J Microencapsul 29:138–146. https://doi.org/10.3109/02652048.2011.635218

    Article  CAS  PubMed  Google Scholar 

  83. Ersoz M, Erdemir A, Derman S et al (2020) Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm Dev Technol 25:757–766. https://doi.org/10.1080/10837450.2020.1740933

    Article  CAS  PubMed  Google Scholar 

  84. Khoerunnisa F, Nurhayati M, Dara F et al (2021) Physicochemical properties of TPP-crosslinked chitosan nanoparticles as potential antibacterial agents. Fibers Polym 22:2954–2964. https://doi.org/10.1007/s12221-021-0397-z

    Article  CAS  Google Scholar 

  85. Liu Y, Yang G, Zou D et al (2020) Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind Eng Chem Res 59:4134–4149. https://doi.org/10.1021/acs.iecr.9b04747

    Article  CAS  Google Scholar 

  86. Liu Y, Yang G, Baby T et al (2020) Stable polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation. Angew Chemie 132:4750–4758. https://doi.org/10.1002/ange.201913539

    Article  Google Scholar 

  87. Kohle FFE, Hinckley JA, Wiesner UB (2019) Dye encapsulation in fluorescent core–shell silica nanoparticles as probed by fluorescence correlation spectroscopy. J Phys Chem C 123:9813–9823. https://doi.org/10.1021/acs.jpcc.9b00297

    Article  CAS  Google Scholar 

  88. Eya’aneMeva F, Ntoumba AA, Belle EbandaKedi P et al (2019) Silver and palladium nanoparticles produced using a plant extract as reducing agent, stabilized with an ionic liquid: sizing by X-ray powder diffraction and dynamic light scattering. J Mater Res Technol 8:1991–2000. https://doi.org/10.1016/j.jmrt.2018.12.017

    Article  CAS  Google Scholar 

  89. Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J et al (2020) Current trends in Pickering emulsions: particle morphology and applications. Engineering 6:468–482. https://doi.org/10.1016/j.eng.2019.08.017

    Article  Google Scholar 

  90. Raval N, Maheshwari R, Kalyane D et al (2019) Chapter 10 - Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In: Tekade RK (ed) Basic Fundamentals of Drug Delivery. Academic Press, pp 369–400

    Chapter  Google Scholar 

  91. Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci Total Environ 738:140240. https://doi.org/10.1016/j.scitotenv.2020.140240

    Article  CAS  PubMed  Google Scholar 

  92. Nath D, Singh F, Das R (2020) X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater Chem Phys 239:122021. https://doi.org/10.1016/j.matchemphys.2019.122021

    Article  CAS  Google Scholar 

  93. Zhao Z, Katai H, Higashi K et al (2019) Cryo-TEM and AFM observation of the time-dependent evolution of amorphous probucol nanoparticles formed by the aqueous dispersion of ternary solid dispersions. Mol Pharm 16:2184–2198. https://doi.org/10.1021/acs.molpharmaceut.9b00158

    Article  CAS  PubMed  Google Scholar 

  94. Amin MK, Boateng JS (2022) Enhancing stability and mucoadhesive properties of chitosan nanoparticles by surface modification with sodium alginate and polyethylene glycol for potential oral mucosa vaccine delivery. Mar Drugs 20:156. https://doi.org/10.3390/md20030156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mohanraj VJ, Chen Y (2007) Nanoparticles - a review. Trop J Pharm Res 5:561–573. https://doi.org/10.4314/tjpr.v5i1.14634

    Article  Google Scholar 

  96. Yu Z, Fan W, Wang L et al (2019) Effect of surface charges on oral absorption of intact solid lipid nanoparticles. Mol Pharm 16:5013–5024. https://doi.org/10.1021/acs.molpharmaceut.9b00861

    Article  CAS  PubMed  Google Scholar 

  97. Lima T, Bernfur K, Vilanova M, Cedervall T (2020) Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci Rep 10:1129. https://doi.org/10.1038/s41598-020-57943-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu Q, Han C, Tian Y, Liu T (2020) Fabrication of curcumin-loaded zein nanoparticles stabilized by sodium caseinate/sodium alginate: curcumin solubility, thermal properties, rheology, and stability. Process Biochem 94:30–38. https://doi.org/10.1016/j.procbio.2020.03.017

    Article  CAS  Google Scholar 

  99. Liu Y, Yang G, Jin S et al (2020) Development of high-drug-loading nanoparticles. Chempluschem 85:2143–2157. https://doi.org/10.1002/cplu.202000496

    Article  CAS  PubMed  Google Scholar 

  100. Poinard B, Neo SZY, Yeo ELL et al (2018) Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy. ACS Appl Mater Interfaces 10:21125–21136. https://doi.org/10.1021/acsami.8b04799

    Article  CAS  PubMed  Google Scholar 

  101. Mehryab F, Rabbani S, Shahhosseini S et al (2020) Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater 113:42–62. https://doi.org/10.1016/j.actbio.2020.06.036

    Article  CAS  PubMed  Google Scholar 

  102. Weng J, Tong HHY, Chow SF (2020) In vitro release study of the polymeric drug nanoparticles: development and validation of a novel method. Pharmaceutics 12:732. https://doi.org/10.3390/pharmaceutics12080732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gagliardi A, Giuliano E, Venkateswararao E et al (2021) Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 12:601626. https://doi.org/10.3389/fphar.2021.601626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gordillo-Galeano A, Mora-Huertas CE (2018) Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 133:285–308. https://doi.org/10.1016/j.ejpb.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  105. Wang Z, Deng X, Ding J et al (2018) Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: a review. Int J Pharm 535:253–260. https://doi.org/10.1016/j.ijpharm.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  106. Moradi Kashkooli F, Soltani M, Souri M (2020) Controlled anti-cancer drug release through advanced nano-drug delivery systems: static and dynamic targeting strategies. J Control Release 327:316–349. https://doi.org/10.1016/j.jconrel.2020.08.012

    Article  CAS  PubMed  Google Scholar 

  107. Jithan A, Madhavi K, Madhavi M, Prabhakar K (2011) Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int J Pharm Investig 1:119–125. https://doi.org/10.4103/2230-973X.82432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alqahtani FY, Aleanizy FS, El TE et al (2019) Preparation, characterization, and antibacterial activity of diclofenac-loaded chitosan nanoparticles. Saudi Pharm J 27:82–87. https://doi.org/10.1016/j.jsps.2018.08.001

    Article  PubMed  Google Scholar 

  109. Vakilinezhad MA, Amini A, Dara T, Alipour S (2019) Methotrexate and curcumin co-encapsulated PLGA nanoparticles as a potential breast cancer therapeutic system: in vitro and in vivo evaluation. Colloids Surfaces B Biointerfaces 184:110515. https://doi.org/10.1016/j.colsurfb.2019.110515

    Article  CAS  PubMed  Google Scholar 

  110. Sun SB, Liu P, Shao FM, Miao QL (2015) Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med 8:19670–19681

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kurajica S, Ivković IK, Dražić G et al (2022) Phase composition, morphology, properties and improved catalytic activity of hydrothermally-derived manganese-doped ceria nanoparticles. Nanotechnology 33:135709. https://doi.org/10.1088/1361-6528/ac44ed

    Article  Google Scholar 

  112. Ahmad M, Gani A, Hassan I et al (2020) Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Sci Rep 10:3533. https://doi.org/10.1038/s41598-020-60380-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Treuel L, Jiang X, Nienhaus GU (2013) New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface 10:20120939. https://doi.org/10.1098/rsif.2012.0939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dou T, Wang J, Han C et al (2019) Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers. Int J Biol Macromol 138:791–799. https://doi.org/10.1016/j.ijbiomac.2019.07.168

    Article  CAS  PubMed  Google Scholar 

  115. Gao Y, Arokia Vijaya Anand M, Ramachandran V et al (2019) Biofabrication of zinc oxide nanoparticles from aspergillus niger, their antioxidant, antimicrobial and anticancer activity. J Clust Sci 30:937–946. https://doi.org/10.1007/s10876-019-01551-6

    Article  CAS  Google Scholar 

  116. Khan S, Mansoor S, Rafi Z et al (2022) A review on nanotechnology: properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq 348:118008. https://doi.org/10.1016/j.molliq.2021.118008

    Article  CAS  Google Scholar 

  117. Kumar PS, Pavithra KG, Naushad M (2019) Chapter 4 - Characterization techniques for nanomaterials. In: Thomas S, Sakho EHM, Kalarikkal N et al (eds) Nanomaterials for solar cell applications. Elsevier, pp 97–124

    Chapter  Google Scholar 

  118. Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM (2020) Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques. CLSM/SEM/TEM/AFM Adv Colloid Interface Sci 280:102166. https://doi.org/10.1016/j.cis.2020.102166

    Article  CAS  PubMed  Google Scholar 

  119. Lin CY, Shieh MJ (2018) Near-infrared fluorescent dye-decorated nanocages to form grenade-like nanoparticles with dual control release for photothermal theranostics and chemotherapy. Bioconjug Chem 29:1384–1398. https://doi.org/10.1021/acs.bioconjchem.8b00088

    Article  CAS  PubMed  Google Scholar 

  120. Ye J, Zhang R, Chai W, Du X (2018) Low-density lipoprotein decorated silica nanoparticles co-delivering sorafenib and doxorubicin for effective treatment of hepatocellular carcinoma. Drug Deliv 25:2007–2014. https://doi.org/10.1080/10717544.2018.1531953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kadiyala P, Li D, Nuñez FM, et al (2019) High-density lipoprotein-mimicking nanodiscs for chemo-immunotherapy against glioblastoma multiforme. ACS Nano acsnano.8b06842. https://doi.org/10.1021/acsnano.8b06842.

  122. Zhao Y, Chen G, Meng Z et al (2019) A novel nanoparticle drug delivery system based on PEGylated hemoglobin for cancer therapy. Drug Deliv 26:717–723. https://doi.org/10.1080/10717544.2019.1639846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fan N, Zhao J, Zhao W et al (2022) Biodegradable celastrol-loaded albumin nanoparticles ameliorate inflammation and lipid accumulation in diet-induced obese mice. Biomater Sci 10:984–996. https://doi.org/10.1039/D1BM01637G

    Article  CAS  PubMed  Google Scholar 

  124. Zaher S, Soliman ME, Elsabahy M, Hathout RM (2022) Sesamol loaded albumin nanoparticles: a boosted protective property in animal models of oxidative stress. Pharmaceuticals 15:733. https://doi.org/10.3390/ph15060733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lin T, Zhao P, Jiang Y et al (2016) Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 10:9999–10012. https://doi.org/10.1021/acsnano.6b04268

    Article  CAS  PubMed  Google Scholar 

  126. Pan Q, Ban Y, Xu L (2021) Silibinin-albumin nanoparticles: characterization and biological evaluation against oxidative stress-stimulated neurotoxicity associated with Alzheimer’s disease. J Biomed Nanotechnol 17:1123–1130. https://doi.org/10.1166/jbn.2021.3038

    Article  CAS  PubMed  Google Scholar 

  127. Barick KC, Tripathi A, Dutta B et al (2021) Curcumin encapsulated casein nanoparticles: enhanced bioavailability and anticancer efficacy. J Pharm Sci 110:2114–2120. https://doi.org/10.1016/j.xphs.2020.12.011

    Article  CAS  PubMed  Google Scholar 

  128. Zhang S, Song W, Wu H et al (2020) Lecithins-zein nanoparticles for antifungal treatment: Enhancement and prolongation of drug retention in skin with reduced toxicity. Int J Pharm 590:119894. https://doi.org/10.1016/j.ijpharm.2020.119894

    Article  CAS  PubMed  Google Scholar 

  129. Xie W, Liu P, Gao F et al (2022) Platelet–neutrophil hybrid membrane-coated gelatin nanoparticles for enhanced targeting ability and intelligent release in the treatment of non-alcoholic steatohepatitis. Nanomedicine 42:102538. https://doi.org/10.1016/j.nano.2022.102538

    Article  CAS  PubMed  Google Scholar 

  130. Gu M, Luan J, Song K et al (2021) Development of paclitaxel loaded pegylated gelatin targeted nanoparticles for improved treatment efficacy in non-small cell lung cancer (NSCLC): an in vitro and in vivo evaluation study. Acta Biochim Pol 68:583–591. https://doi.org/10.18388/abp.2020_5431

    Article  CAS  PubMed  Google Scholar 

  131. Kumbham S, Ghosh A, Ghosh B, Biswas S (2022) Human serum albumin-poly(Lactide)-conjugated self-assembly NPs for targeted docetaxel delivery and improved therapeutic efficacy in oral cancer. Int J Biol Macromol 222:1287–1303. https://doi.org/10.1016/j.ijbiomac.2022.09.250

    Article  CAS  PubMed  Google Scholar 

  132. de Guzman ACV, Razzak MdA, Cho JH et al (2022) Curcumin-loaded human serum albumin nanoparticles prevent Parkinson’s disease-like symptoms in C. elegans. Nanomaterials 12:758. https://doi.org/10.3390/nano12050758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lomis N, Westfall S, Shum-Tim D, Prakash S (2021) Synthesis and characterization of peptide conjugated human serum albumin nanoparticles for targeted cardiac uptake and drug delivery. PLoS ONE 16:e0254305. https://doi.org/10.1371/journal.pone.0254305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zheng X, Yu X, Wang C et al (2022) Targeted co-delivery biomimetic nanoparticles reverse macrophage polarization for enhanced rheumatoid arthritis therapy. Drug Deliv 29:1025–1037. https://doi.org/10.1080/10717544.2022.2057616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bao X, Qian K, Yao P (2021) Insulin- and cholic acid-loaded zein/casein–dextran nanoparticles enhance the oral absorption and hypoglycemic effect of insulin. J Mater Chem B 9:6234–6245. https://doi.org/10.1039/D1TB00806D

    Article  CAS  PubMed  Google Scholar 

  136. Ma R, Zhang J, Chen Z et al (2022) Treatment of spinal tuberculosis in rabbits using bovine serum albumin nanoparticles loaded with isoniazid and rifampicin. Neurol Res 44:268–274. https://doi.org/10.1080/01616412.2021.1979749

    Article  CAS  PubMed  Google Scholar 

  137. El-Wakil ES, Khodear GAM, Ahmed HES et al (2023) Therapeutic efficacy of albendazole and berberine loaded on bovine serum albumin nanoparticles on intestinal and muscular phases of experimental trichinellosis. Acta Trop 241:106896. https://doi.org/10.1016/j.actatropica.2023.106896

    Article  CAS  PubMed  Google Scholar 

  138. Ghosh S, Banerjee M (2021) A smart viral vector for targeted delivery of hydrophobic drugs. Sci Rep 11: https://doi.org/10.1038/s41598-021-86198-y

  139. Rohovie MJ, Nagasawa M, Swartz JR (2017) Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2:43–57. https://doi.org/10.1002/btm2.10049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mohanty A, Parida A, Raut RK, Behera RK (2022) Ferritin: a promising nanoreactor and nanocarrier for bionanotechnology. ACS Bio & Med Chem Au 2:258–281. https://doi.org/10.1021/acsbiomedchemau.2c00003

    Article  CAS  Google Scholar 

  141. Zhang J, Cheng D, He J et al (2021) Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat Protoc 16:4878–4896. https://doi.org/10.1038/s41596-021-00602-5

    Article  CAS  PubMed  Google Scholar 

  142. Mainini F, Bonizzi A, Sevieri M et al (2021) Protein-based nanoparticles for the imaging and treatment of solid tumors: the case of ferritin nanocages, a narrative review. Pharmaceutics 13:2000. https://doi.org/10.3390/pharmaceutics13122000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li S, Yuan C, Chen J et al (2019) Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release. Theranostics 9:884–899. https://doi.org/10.7150/thno.29445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bae S, Ma K, Kim TH et al (2012) Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials 33:1536–1546. https://doi.org/10.1016/j.biomaterials.2011.10.050

    Article  CAS  PubMed  Google Scholar 

  145. Yang X, Ye Z, Yuan Y et al (2013) Insights into the binding of paclitaxel to human serum albumin: multispectroscopic studies. Luminescence 28:427–434. https://doi.org/10.1002/bio.2522

    Article  CAS  PubMed  Google Scholar 

  146. Makwana H, Mastrotto F, Magnusson JP et al (2017) Engineered polymer–transferrin conjugates as self-assembling targeted drug delivery systems. Biomacromol 18:1532–1543. https://doi.org/10.1021/acs.biomac.7b00101

    Article  CAS  Google Scholar 

  147. Thomsen MS, Johnsen KB, Kucharz K et al (2022) Blood–brain barrier transport of transferrin receptor-targeted nanoparticles. Pharmaceutics 14:2237. https://doi.org/10.3390/pharmaceutics14102237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge assistance from the Principal, Vice Principal, and Management of Calcutta Institute of Pharmaceutical Technology & Allied Health Sciences, West Bengal, India, and from the Director, School of Pharmacy, Techno India University, West Bengal, India for imparting help and support in completion of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhabrota Majumdar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, S.C., Mahanti, B., Ganguly, S. et al. Potential paradigm of proteins and polypeptides-based nanostructures in drug delivery and management of maladies: a review. J Nanopart Res 26, 65 (2024). https://doi.org/10.1007/s11051-024-05978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05978-5

Keywords

Navigation