Skip to main content
Log in

Numerical investigation on performance improvement of CuO/TiO2 heterojunctions for applications in sunlight-driven photodetectors and photocatalysts

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The performance improvement of CuO/TiO2 heterojunctions was investigated to contribute to the understanding of factors influencing the performance of the heterojunctions and their potential applications in sunlight-driven photodetectors and photocatalysts. By using optimal parameters (TiO2 (CuO)’s thickness of 5 µm (60 nm), acceptor (donor) doping concentration of 1017 cm−3 (1018 cm−3), required interface defect of 1013 cm−3, and under AM 1.5G illumination at 27 °C and 0 V bias voltage, the device achieved a photocurrent density of 13 mA/cm2, a photoresponsivity of 3.25 A/W, a detectivity of 1.8 × 1014 Jones, and effectiveness across UVA and visible light. At temperatures approaching 300 °C, the CuO/TiO2 device maintained its high photoresponsivity and efficiency, indicating its suitability for applications in high-temperature environments, such as hydrogen production through photocatalysis. The results suggest that the devices have the potential to be utilized in sunlight-driven optoelectronic and photocatalyst industries, offering cost-effectiveness and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data and code availability

The raw/processed data required to produce these findings cannot be shared at this time due to legal or ethical reasons. The data will be made available on request.

References

  1. Mahapatra AD, Das A, Ghosh S, Basak D (2019) Defect-assisted broad-band photosensitivity with high responsivity in Au/self-seeded TiO2 NR/Au-based back-to-back Schottky junctions. ACS Omega 4:1364–1374. https://doi.org/10.1021/acsomega.8b0308

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hou H, Gao F, Wang L, Shang M, Yang Z, Zheng J, Yan W (2016) Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J Mater Chem A 4:6276–6281. https://doi.org/10.1039/c6ta02307j

    Article  CAS  Google Scholar 

  3. Zhang K, Zhou W, Zhang X, Qu Y, Wang L, Hu W, Pan K, liXiejiangTian MYBG (2016) Large-scale synthesis of stable mesoporous black TiO2 nanosheets for efficient solar-driven photocatalytic hydrogen evolution via earth-abundant low-cost biotemplate. RSC Adv 56(6):50506–50512. https://doi.org/10.1039/C6RA06751D

    Article  CAS  Google Scholar 

  4. Gao C, Li T, Zhu XP, Chen LL, Wang YQ (2014) High performance, self-powered UV-photodetector based on ultrathin, transparent, SnO2 -TiO2 core-shell electrodes. J Alloys Comp 616:510–515. https://doi.org/10.1016/J.JALLCOM.2014.07.171

    Article  CAS  Google Scholar 

  5. Ma J, Tian Z, Li L, Lu Y, Xu X, Hou J (2022) Loading nano-CuO on TiO2 nanomeshes towards efficient photodegradation of methylene blue. Catalysts 12:383. https://doi.org/10.3390/catal12040383

    Article  CAS  Google Scholar 

  6. Sivaramalingam A, Salammal ST, Soosaimanickam A, Sakthivel T, David SP, Sambandam B (2021) Role of TiO2 in highly efficient solar cells. Environmental Chemistry for a Sustainable World 62:147–168. https://doi.org/10.1007/978-3-030-63791-0_5

    Article  Google Scholar 

  7. Pansri S, Supruangnet R, Nakajima H, Rattanasuporn S, Noothongkaew S (2020) Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors. J of Materials Science 55:4332–4344. https://doi.org/10.1007/s10853-019-04305-x

    Article  ADS  CAS  Google Scholar 

  8. KarthikYadav PV, Ajitha B, Anees Ahmed CM, Ashok Kumar Reddy Y, Reddy VRM (2022) Superior UV photodetector performance of TiO2 films using Nb doping. J. of Physics and Chemistry of Solids 160:110350. https://doi.org/10.1016/j.jpcs.2021.110350

    Article  CAS  Google Scholar 

  9. Choi H, Kang M (2007) Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2TiO2. Int J Hydrogen Energy 32(16):3841–3848. https://doi.org/10.1016/j.ijhydene.2007.05.011

    Article  CAS  Google Scholar 

  10. Zhang N, Liu SQ, Fu XZ, Xu YJ (2011) Synthesis of M@TiO 2 (M = Au, Pd, Pt) core-shell nanoconnposites with tunable photoreactivity. The Journal of Physical Chemistry C 115(18):9136–9145. https://doi.org/10.1021/jp2009989

    Article  CAS  Google Scholar 

  11. Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D (2014) Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. Coli strain in biologically treated urban wastewater. Appl Catal B-Environ 144:369–378. https://doi.org/10.1016/j.apcatb.2013.07.033

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang Y, Zhao G, Tian H, Shi H, Zhou T (2012) Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. ACS Appl Mater Interfaces 4:3965–3972. https://doi.org/10.1021/am300795w

    Article  CAS  PubMed  Google Scholar 

  13. Subha PP, Vikas LS, Jayarajl MK (2018) Solution-processed CuO/TiO2 heterojunction for enhanced room temperature ethanol sensing applications. Phys Scr 93:055001. https://doi.org/10.1088/1402-4896/aaae1a

    Article  ADS  CAS  Google Scholar 

  14. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis characterization growth mechanisms fundamental properties and applications. Prog Mater Sci 60:208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003

    Article  CAS  Google Scholar 

  15. Dixit T, Tripathi A, Solanke SV, Ganapathi KL, Rao MSR, Sing V (2020) Ultra-wide bandgap copper oxide: high performance solar-blind photo-detection. IEEE Electron Device Lett 41(12):1790–1793. https://doi.org/10.1109/LED.2020.3030641

    Article  ADS  CAS  Google Scholar 

  16. Tripathi A, Dixit T, Agrawal J, Singh V (2020) Bandgap engineering in CuO nanostructures: dual-band broadband and UV-C photodetectors. Applied Physics Lett 116(11):111102. https://doi.org/10.1063/1.5128494

    Article  ADS  CAS  Google Scholar 

  17. Ozga M, Kaszewski J, Seweryn A, Sybilski P, Godlewski M, Witkowski BS (2020) Ultra-fast growth of copper oxide (II) thin films using hydrothermal method. Mater Sci Semicond Process 120:105279. https://doi.org/10.1016/j.mssp.2020.105279

    Article  CAS  Google Scholar 

  18. Xu L, Zheng L, Pei S, Wang J (2018) Investigation of optical bandgap variation and photoluminescence behavior in nanocrystalline CuO thin films. Optik 158:382–390. https://doi.org/10.1016/j.ijleo.2017.12.138

    Article  ADS  CAS  Google Scholar 

  19. Zhang S, Gong X, Shi Q, Ping G, Xu H, Waleed A, Li G (2020) CuO Nanoparticle-decorated TiO2 nanotube heterojunctions for direct synthesis of methyl formate via photo-oxidation of methanol. ACS Omega 5:15942–15948. https://doi.org/10.1021/acsomega.0c01169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Shi Q, Ping G, Wang X, Xu H, Li J, Cui J, Abroshan H, Ding H, Li G (2019) CuO/TiO2 heterojunction composites: an efficient photocatalyst for selective oxidation of methanol to methyl formate. J Mater Chem A 7:2253–2260. https://doi.org/10.1039/C8TA09439J

    Article  CAS  Google Scholar 

  21. Pan C, Shen H, Liu G, Zhang X, Liu X, Liu H, Xu P, Chen W, Tian Y, Deng H, Sun H, Wang J, Luo Z, Zhang L, Guo Y (2022) CuO/TiO2 nanobelt with oxygen vacancies for visible-light-driven photocatalytic bacterial inactivation. ACS Appl Nano Mater 5(8):10980–10990. https://doi.org/10.1021/acsanm.2c02226

    Article  CAS  Google Scholar 

  22. Aydın EB, Ateş S, Sığırcık G (2022) CuO-TiO2 nanostructures prepared by chemical and electrochemical methods as photo electrode for hydrogen production. Int J Hydrogen Energy 47(10):6519–6534. https://doi.org/10.1016/j.ijhydene.2021.12.032

    Article  CAS  Google Scholar 

  23. Peh CKN, Wang X-Q, Ho GW (2017) Increased photocatalytic activity of CuO/TiO2 through broadband solar absorption heating under natural sunlight. Procedia Engineering 215:171–179. https://doi.org/10.1016/j.proeng.2017.11.006

    Article  CAS  Google Scholar 

  24. Li D, Chu H, Wang X, Li Y, Zhao S, Li D (2021) Enhanced broadband nonlinear optical response of TiO2/CuO nanosheets via oxygen vacancy engineering. Nanophotonics 10(5):1541–1551. https://doi.org/10.1515/nanoph-2020-064

    Article  Google Scholar 

  25. Park S, Yoon Y, Kim H, Park T, Kim K, Hong J (2023) A self-powered high-responsivity, fast-response-speed solar-blind ultraviolet photodetector based on CuO/β-Ga2O3 heterojunction with built-in potential control. Nanomaterials 13:954. https://doi.org/10.3390/nano13050954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Costas A, Florica C, Preda N, Apostol N, Kuncser A, Nitescu A, Enculescu I (2019) Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications. Sci Rep 9(1):5553. https://doi.org/10.1038/s41598-019-42060-w

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  27. Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361:527–532. https://doi.org/10.1016/S0040-6090(99)00825-1

    Article  ADS  Google Scholar 

  28. Mouchou RT, Jen TC, Laseinde OT, Ukoba KO (2021) Numerical simulation and optimization of p-NiO/n-TiO2 solar cell msystem using SCAPS. Materials Today: Proceedings 38(2):835–841. https://doi.org/10.1016/j.matpr.2020.04.880

    Article  CAS  Google Scholar 

  29. Oublal E, Abdelkadir AA, Sahal M (2022) High performance of a new solar cell based on carbon nanotubes with CBTS compound as BSF using SCAPS1D software. J Nanopart Res 24:202. https://doi.org/10.1007/s11051-022-05580-7

    Article  CAS  Google Scholar 

  30. Yao H, Liu L (2022) Design and optimize the performance of self-powered photodetector based on PbS/TiS3 heterostructure by SCAPS-1D. Nanomaterials 12:325. https://doi.org/10.3390/nano12030325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sobayel K, Shahinuzzaman M, Amin N, Karim MR, Dar MA, Gul R, Alghoulg MA, Sopiana K, Hasan AKM, Akhtaruzzaman M (2020) Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool. Sol Energy 207:479–485. https://doi.org/10.1016/j.solener.2020.07.007

    Article  ADS  CAS  Google Scholar 

  32. Minbashi M, Ghobadi A, Ehsani MH, Dizaji HR, Memarian N (2018) Simulation of high efficiency SnS-based solar cells with SCAPS. Sol Energy 176:520–525. https://doi.org/10.1016/j.solener.2018.10.058

    Article  ADS  CAS  Google Scholar 

  33. Derry GN, Kern ME, Worth EH (2015) Recommended values of clean metal surface work functions. J Vac Sci Technol, A: Vac, Surf Films 33:060801. https://doi.org/10.1116/1.4934685

    Article  ADS  CAS  Google Scholar 

  34. Sawicka-Chudy P, Wisz G, Starowicz Z, Yavorskyi R, Zapukhlyak Z, Bester M, Głowa Ł, Sibiński M, Cholewa M (2019) Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater Res Express 6:085918. https://doi.org/10.1088/2053-1591/ab22aa

    Article  ADS  CAS  Google Scholar 

  35. Olmo D, Pavelka D, Juraj M, Juraj K (2021) Open-circuit voltage comes from non-equilibrium thermodynamics. Journal of Non-Equilibrium Thermodynamics 46(1):91–108. https://doi.org/10.1515/jnet-2020-0070

    Article  ADS  Google Scholar 

  36. Sopha H, Baudys M, Hromadko L, Lhotka M, Pavlinak D, Krysa J, Macak JM (2022) Scaling up anodic TiO2 nanotube layers – influence of the nanotube layer thickness on the photocatalytic degradation of hexane and benzene. Appl Mater Today 29:101567. https://doi.org/10.1016/j.apmt.2022.101567

    Article  Google Scholar 

  37. Ren Y, Shi X, Xia P, Li S, Lv M, Wang Y, Mao Z (2020) In situ Raman investigation of TiO2 nanotube array-based ultraviolet photodetectors: effects of nanotube length. Molecules 25:1854. https://doi.org/10.3390/molecules25081854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kumari JMKW, Sanjeevadharshini N, Dissanayake MAKL, Senadeera GKR, Thotawatthage CA (2016) The effect of TiO2 photoanode film thickness on photovoltaic properties of dye-sensitized solar cells. Ceylon Journal of Science 45(1):33–41. https://doi.org/10.4038/cjs.v45i1.7362

    Article  Google Scholar 

  39. Rahman MF, Hidayat NA, Diantoro M (2019) The influence of TiO2 film thickness in dye sensitized solar cells (DSSC) performance based on TiO2/Ag@TiO2-ZnO. J. Phys Conf. Ser 1572:012079. https://doi.org/10.1088/1742-6596/1572/1/012079

    Article  CAS  Google Scholar 

  40. Iraj M, Kolahdouz M, Asl-Soleimani E, Esmaeili E, Kolahdouz Z (2016) TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells. J Mater Sci: Mater Electron 27:6496–6501. https://doi.org/10.1007/s10854-016-4591-5

    Article  CAS  Google Scholar 

  41. Ahmad K, Raza W, Khan RA, Alsalme A, Kim H (2022) Numerical simulation of NH3 (CH2)2 NH3 MnCl4 based Pb-free perovskite solar cells via SCAPS-1D. Nanomaterials 12:3407. https://doi.org/10.3390/nano12193407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Abbas S, Bajgai S, Chowdhury S, Najm AS, Jamal MS, Techato K, Channumsin S, Sreesawet S, Channumsin M (2022) Numerical simulation of the performance of Sb2 Se3 solar cell via optimizing the optoelectronic properties based SCAPS-1D. Materials 15:6272. https://doi.org/10.3390/ma15186272

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lupan O, Santos-Carballal D, Ababii N, Magariu N, Hansen S, Vahl A, Zimoch L, Hoppe M, Pauporté T, Galstyan V, Sontea V, Chow L, Faupel F, Adelung R, de Leeuw NH, Comini E (2021) TiO2/Cu2O/CuO multi-nanolayers as sensors for H2 and volatile organic compounds: an experimental and theoretical investigation. ACS Appl Mater Interfaces 13:32363–32380. https://doi.org/10.1021/acsami.1c04379

    Article  CAS  PubMed  Google Scholar 

  44. Sawicka-Chudy P, Sibiński M, Wisz G, Rybak-Wilusz E, Cholewa M (2018) Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS. Journal of Physics: Conf Series 1033:012002. https://doi.org/10.1088/1742-6596/1033/1/012002

    Article  CAS  Google Scholar 

  45. Anwar F, Sarwar Satter S, Mahbub R, Mahmud Ullah S, Afrin S (2017) Simulation and performance study of nanowire CdS/CdTe solar cell. International journal of renewable energy research 7(2):885–893. https://doi.org/10.13140/RG.2.2.25657.98400

    Article  Google Scholar 

  46. Gnanasekaran L, Pachaiappan R, Kumar PS, Tuan KA, Hoang RS, Durgalakshmi D, Soto-Moscosof M, Cornejo-Poncea L, Graciag F (2021) Visible light driven exotic p(CuO) - n(TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity. Environ Pollut 287:117304. https://doi.org/10.1016/j.envpol.2021.117304

    Article  CAS  PubMed  Google Scholar 

  47. Khattak YH, Baig F, Ullah S, Marí B, Beg S, Ullah H (2018) Enhancement of the conversion efficiency of thin film kesterite solar cell. J. of renewable and sustainable energy 10(3):033501. https://doi.org/10.1063/1.5023478

    Article  CAS  Google Scholar 

  48. Ali MH, Mamun MAA, Haque MD, Rahman MF, Hossain MK, Islam AZMT (2023) Performance enhancement of an MoS2-based heterojunction solar cell with an In2Te3 back surface field: a numerical simulation approach. ACS Omega 8:7017–7029. https://doi.org/10.1021/acsomega.2c07846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhuang J, Weng S, Dai W, Liu P, Liu Q (2012) Effects of interface defects on charge transfer and photoinduced properties of TiO2 bilayer films. J Phys Chem C 116:25354–32536. https://doi.org/10.1021/jp307871y

    Article  CAS  Google Scholar 

  50. Sawicka-Chudy P, Starowicz Z, Wisz G, Yavorskyi R, Zapukhlyak Z, Bester M, Głowa L, Sibiński M (2019) Cholewa M (2019) Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater Res Express 6:085918. https://doi.org/10.1088/2053-1591/ab22aa

    Article  ADS  CAS  Google Scholar 

  51. Gong X, Tong M, Xia Y, Cai X, Moon JS, Cao Y, Yu G, Shieh CL, Nilsson B, Heeger AJ (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948):1665. https://doi.org/10.1126/science.11767

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Asia Research Center, Chulalongkorn University, for funding support and Ubon Ratchathani University for allowing this research.

Author information

Authors and Affiliations

Authors

Contributions

Author 1: Suttinart Noothongkaew: collected the data, contributed data or analysis tools, and performed the analysis.

Author 2: Thatchaphon Phongsapatcharamon: conceived and designed the analysis and wrote the paper

Corresponding author

Correspondence to Thatchaphon Phongsapatcharamon.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noothongkaew, S., Phongsapatcharamon, T. Numerical investigation on performance improvement of CuO/TiO2 heterojunctions for applications in sunlight-driven photodetectors and photocatalysts. J Nanopart Res 26, 33 (2024). https://doi.org/10.1007/s11051-024-05940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05940-5

Keywords

Navigation