Skip to main content
Log in

Current and evolving knowledge domains of cubosome studies in the new millennium

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cubosomes have aroused growing interest recently due to their widespread applications in pharmaceutical, food, cosmetic industries, etc. Especially, they demonstrate many advantages as drug delivery systems. However, no pharmaceutical products have been translated from bench to bedside so far. To promote the translation of the drug delivery system candidate, it is significant to accumulate fundamental and applied-fundamental knowledge of cubosomes. In the study, a bibliometric study upon cubosome research was carried out on the basis of Web of Science Core Collection database to figure out current and evolving knowledge domains of the published studies in a logical and robust way, summarizing the status quo and pointing out the future directions of cubosome research. Four questions which are pending addressed were answered by applying this research method and some conclusions were drawn: (1) Australia could be viewed as the most productive contributor for cubosome research. (2) Langmuir might be the most influential publishing media. (3) Using cubosomes as drug delivery carriers was a hot topic. (4) Adopting cubosomes as ocular drug delivery vehicles would continue to be a frequently studied aspect. In addition, cubosomes serve as alternative vector deliver active pharmaceutical ingredients to the brain and encapsulate active components extracted from herbal and traditional medicines in cubosomes are the burgeoning trends. By answering the four questions, productive contributors, influential publishing media, current research foci, and future directions were figured out. Hence, the current and evolving knowledge domains of cubosome studies were illustrated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    Article  CAS  Google Scholar 

  2. Selmani A, Kovacevic D, Bohinc K (2022) Nanoparticles: From synthesis to applications and beyond. Adv Colloid Interf Sci 303:102640

    Article  CAS  Google Scholar 

  3. Cao KLA, Iskandar F, Tanabe E, Ogi T (2023) Recent Advances in the Fabrication and Functionalization of Nanostructured Carbon Spheres for Energy Storage Applications. KONA Powder Part J 40:197–218

    Article  Google Scholar 

  4. Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  5. Ijaz I, Gilani E, Nazir A, Bukhari A (2020) Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13:59–81

    Article  Google Scholar 

  6. Yaghmur A, Tran BV, Moghimi SM (2020) Non-Lamellar Liquid Crystalline Nanocarriers for Thymoquinone Encapsulation. Molecules 25:14

    Google Scholar 

  7. Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-Santos P, Botelho CM (2022) A Versatile Nanocarrier-Cubosomes, Characterization, and Applications. Nanomaterials 12:26

    Article  Google Scholar 

  8. Ridolfi A, Humphreys B, Caselli L, Montis C, Nylander T, Berti D, Brucale M, Valle F (2022) Nanoscale structural and mechanical characterization of thin bicontinuous cubic phase lipid films. Colloids Surf B Biointerfaces 210:8

    Article  Google Scholar 

  9. Anderson DM, Gruner SM, Leibler S (1988) Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. Proc Natl Acad Sci USA 85:5364–5368

    Article  CAS  Google Scholar 

  10. Chen H, Jin CY (2017) Competition brings out the best: modelling the frustration between curvature energy and chain stretching energy of lyotropic liquid crystals in bicontinuous cubic phases. Interface Focus 7:10

    Article  CAS  Google Scholar 

  11. Shearman GC, Ces O, Templer RH, Seddon JM (2006) Inverse lyotropic phases of lipids and membrane curvature. J Phys Condens Matter 18:S1105–S1124

    Article  CAS  Google Scholar 

  12. Tenchov BG, MacDonald RC, Lentz BR (2013) Fusion Peptides Promote Formation of Bilayer Cubic Phases in Lipid Dispersions. An X-Ray Diffraction Study. Biophys J 104:1029–1037

    Article  CAS  Google Scholar 

  13. Bassereau P, Jin R, Baumgart T, Deserno M, Dimova R, Frolov VA, Bashkirov PV, Grubmuller H, Jahn R, Risselada HJ, Johannes L, Kozlov MM, Lipowsky R, Pucadyil TJ, Zeno WF, Stachowiak JC, Stamou D, Breuer A, Lauritsen L et al (2018) The 2018 biomembrane curvature and remodeling roadmap. J Phys D Appl Phys 51:42

    Article  Google Scholar 

  14. Barriga HMG, Holme MN, Stevens MM (2019) Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 58:2958–2978

    Article  CAS  Google Scholar 

  15. Shan X, Luo L, Yu Z, You J (2022) Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 348:1–21

    Article  CAS  Google Scholar 

  16. Chen H, Li MH (2021) Recent Progress in Polymer Cubosomes and Hexosomes. Macromol Rapid Commun 42:24

    Article  Google Scholar 

  17. Lotierzo MCG, Casadei BR, de Castro RD, Malheiros B, Barbosa LRS (2020) Cubic-to-inverted micellar and the cubic-to-hexagonal-to-micellar transitions on phytantriol-based cubosomes induced by solvents. Drug Deliv Transl Res 10:1571–1583

    Article  CAS  Google Scholar 

  18. Tan C, Hosseini SF, Jafari SM (2022) Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. J Agric Food Chem 70:1423–1437

    Article  CAS  Google Scholar 

  19. Ha SM, La YJ, Kim KT (2020) Polymer Cubosomes: Infinite Cubic Mazes and Possibilities. Acc Chem Res 53:620–631

    Article  CAS  Google Scholar 

  20. Yakaew S, Luangpradikun K, Phimnuan P, Nuengchamnong N, Kamonsutthipaijit N, Rugmai S, Nakyai W, Ross S, Ungsurungsei M, Viyoch J, Ross G (2022) Investigation into poloxamer 188-based cubosomes as a polymeric carrier for poor water-soluble actives. J Appl Polym Sci 139:12

    Article  Google Scholar 

  21. Villalva DG, Franca CG, Loh W (2022) Characterization of cubosomes immobilized in hydrogels of hyaluronic acid and their use for diclofenac controlled delivery. Colloids Surf B Biointerfaces 212:9

    Article  Google Scholar 

  22. Nasr M, Ghorab MK, Abdelazem A (2015) In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B 5:79–88

    Article  Google Scholar 

  23. Kulkarni CV, Vishwapathi VK, Quarshie A, Moinuddin Z, Page J, Kendrekar P, Mashele SS (2017) Self-Assembled Lipid Cubic Phase and Cubosomes for the Delivery of Aspirin as a Model Drug. Langmuir 33:9907–9915

    Article  CAS  Google Scholar 

  24. Boge L, Hallstensson K, Ringstad L, Johansson J, Andersson T, Davoudi M, Larsson PT, Mahlapuu M, Hakansson J, Andersson M (2019) Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm 134:60–67

    Article  CAS  Google Scholar 

  25. Boge L, Browning KL, Nordstrom R, Campana M, Darngaard LSE, Caous JS, Hellsing M, Ringstad L, Andersson M (2019) Peptide-Loaded Cubosomes Functioning as an Antimicrobial Unit against Escherichia coil. ACS Appl Mater Interfaces 11:21314–21322

    Article  CAS  Google Scholar 

  26. Liu ZG, Xing J, Zheng SS, Bo RN, Luo L, Huang Y, Niu YL, Li ZH, Wang DY, Hu YL, Liu JG, Wu Y (2016) Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response. Carbohydr Polym 142:141–148

    Article  CAS  Google Scholar 

  27. Lai XF, Han ML, Ding Y, Chow SH, Le Brun AP, Wu CM, Bergen PJ, Jiang JH, Hsu HY, Muir BW, White J, Song JN, Li J, Shen HH (2022) A polytherapy based approach to combat antimicrobial resistance using cubosomes. Nat Commun 13:12

    Article  CAS  Google Scholar 

  28. Liu ZG, Yu L, Gu PF, Bo RN, Xu SW, Wusiman A, Liu JG, Hu YL, Wang DY (2020) Surface-Engineered Cubosomes Serve as a Novel Vaccine Adjuvant to Modulate Innate Immunity and Improve Adaptive Immunity in vivo. Int J Nanomedicine 15:8595–8608

    Article  CAS  Google Scholar 

  29. Katouzian I, Esfanjani AF, Jafari SM, Akhavan S (2017) Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci Technol 68:14–25

    Article  CAS  Google Scholar 

  30. Serieye S, Meducin F, Milosevic I, Fu L, Guillot S (2017) Interface tuning and stabilization of monoglyceride mesophase dispersions: Food emulsifiers and mixtures efficiency. J Colloid Interface Sci 496:26–34

    Article  CAS  Google Scholar 

  31. Yadav S (2017) Realizing the potential of nanotechnology for agriculture and food technology. J Tissue Sci Eng 8:1000195

  32. Rakotoarisoa M, Angelov B, Espinoza S, Khakurel K, Bizien T, Drechsler M, Angelova A (2021) Composition-Switchable Liquid Crystalline Nanostructures as Green Formulations of Curcumin and Fish Oil. ACS Sustain Chem Eng 9:14821–14835

    Article  CAS  Google Scholar 

  33. Saraf S, Kaur CD, Gupta A, Verma N (2019) Skin Targeting Approaches in Cosmetics. Indian J Pharm Educ 53:577–594

    Article  CAS  Google Scholar 

  34. Morais GG, Santos ODH, Oliveira WP, Rocha PA (2008) Attainment of O/W emulsions containing liquid crystal from annatto oil (Bixa orellana), coffee oil, and tea tree oil (Melaleuca alternifolia) as oily phase using HLB system and ternary phase diagram. J Dispers Sci Technol 29:297–306

    Article  CAS  Google Scholar 

  35. Zhang W, Liu L (2013) Study on the Formation and Properties of Liquid Crystal Emulsion in Cosmetic. J Cosmet Dermatol 03:139–144

    CAS  Google Scholar 

  36. Huynh Mai C, Thanh Diep T, Le TTT, Nguyen V (2019) Advances in colloidal dispersions: A review. J Dispers Sci Technol 41:479–494

    Article  Google Scholar 

  37. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: A future perspective on cancer treatment. Nanomedicine 12:81–103

    Article  CAS  Google Scholar 

  38. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37

    Article  CAS  Google Scholar 

  39. Richardson JJ, Caruso F (2020) Nanomedicine toward 2040. Nano Lett 20:1481–1482

    Article  CAS  Google Scholar 

  40. Prange JA, Aleandri S, Komisarski M, Luciani A, Kaech A, Schuh C-D, Hall AM, Mezzenga R, Devuyst O, Landau EM (2019) Overcoming Endocytosis Deficiency by Cubosome Nanocarriers. ACS Appl Bio Mater 2:2490–2499

    Article  CAS  Google Scholar 

  41. Sharma P, Dhawan S, Nanda S (2020) Cubosome: A Potential Liquid Crystalline Carrier System. Curr Pharm Des 26:3300–3316

    Article  CAS  Google Scholar 

  42. Teba HE, Khalil IA, El Sorogy HM (2021) Novel cubosome based system for ocular delivery of acetazolamide. Drug Deliv 28:2177–2186

    Article  CAS  Google Scholar 

  43. Song L, Wu Y, Yuan S, Liu K, Wang Q, Ma D, Ma C (2022) A Bibliometric Analysis for Global Trends and Full View of the Autophagy in Ischemic Stroke from 2006 to 2022. Biomed Res Int 2022:7799243

    Article  Google Scholar 

  44. Pan Y, Deng XY, Zhuang Y, Li JY (2022) Research Trends around Exercise Rehabilitation among Cancer Patients: A Bibliometrics and Visualized Knowledge Graph Analysis. Biomed Res Int 2022:11

    Article  Google Scholar 

  45. Li SM, Guo YW, Hou XY, Liu JH, Fan WL, Ju ST, Matos PAW, Rokohl AC, Heindl LM (2022) Mapping research trends of uveal melanoma: a bibliometric analysis. Int Ophthalmol 42:1121–1131

    Article  CAS  Google Scholar 

  46. Morschbacher AP, Granada CE (2022) Mapping the worldwide knowledge of antimicrobial substances produced by Lactobacillus spp.: A bibliometric analysis. Biochem Eng J 180:11

    Article  Google Scholar 

  47. Wei RC, Lan JM, Lian LP, Huang SS, Zhao C, Dong ZR, Weng JW (2022) A bibliometric study on research trends in hydrogen safety. Process Saf Environ Prot 159:1064–1081

    Article  CAS  Google Scholar 

  48. Zhu S, Liu Y, Gu Z, Zhao Y (2022) Research trends in biomedical applications of two-dimensional nanomaterials over the last decade - A bibliometric analysis. Adv Drug Deliv Rev 188:114420

    Article  CAS  Google Scholar 

  49. Zhu S, Li LL, Gu ZJ, Chen CY, Zhao YL (2020) 15 Years of Small: Research Trends in Nanosafety. Small 16:10

    Article  CAS  Google Scholar 

  50. Zhu S, Liu YP, Gu ZJ, Zhao YL (2021) A Bibliometric Analysis of Advanced Healthcare Materials: Research Trends of Biomaterials in Healthcare Application. Adv Healthc Mater 10:9

    Article  Google Scholar 

  51. Zhou XD, Zhao GH (2015) Global liposome research in the period of 1995-2014: a bibliometric analysis. Scientometrics 105:231–248

    Article  CAS  Google Scholar 

  52. Zhou X, Huang L, Porter A, Vicente-Gomila JM (2019) Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles. Technol Forecast Soc Chang 146:785–794

    Article  Google Scholar 

  53. Ho YS, Fu HZ (2016) Mapping of metal-organic frameworks publications: A bibliometric analysis. Inorg Chem Commun 73:174–182

    Article  CAS  Google Scholar 

  54. Zhu S, Meng H, Gu ZJ, Zhao YL (2021) Research trend of nanoscience and nanotechnology - A bibliometric analysis of Nano Today. Nano Today 39:10

    Article  Google Scholar 

  55. Aleixandre-Tudo JL, Bolanos-Pizarro M, Aleixandre JL, Aleixandre-Benavent R (2020) Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges. J Agric Food Chem 68:9158–9170

    Article  CAS  Google Scholar 

  56. Su BY, Guan QD, Yu SF (2018) The neurotoxicity of nanoparticles: A bibliometric analysis. Toxicol Ind Health 34:922–929

    Article  CAS  Google Scholar 

  57. Ma Y, Zhou RY, Wu Q (2021) Global research hotspots and research trends on idiopathic pulmonary fibrosis: a bibliometric and visualization analysis. Ann Palliat Med 10:9057–9068

    Article  Google Scholar 

  58. Kaya E, Ucer H (2022) Tularemia research activity: a bibliometric analysis between 1980 and 2020. Infection 50:1507–1515

    Article  Google Scholar 

  59. Islam MA, Kundu S, Hanis TM, Hajissa K, Musa KI (2022) A Global Bibliometric Analysis on Antibiotic-Resistant Active Pulmonary Tuberculosis over the Last 25 Years (1996-2020). Antibiotics (Basel) 11:1012

    Article  Google Scholar 

  60. Huang Z, Wang W, Shu L, Guo M, Huang Y, Wu C, Pan X (2022) Explicating the publication paradigm by bibliometric approaches: A case of interplay between nanoscience and ferroptosis. Health Care Science

    Google Scholar 

  61. Nagendrababu V, Jacimovic J, Jakovljevic A, Rossi-Fedele G, Dummer PMH (2022) A bibliometric analysis of the top 100 most-cited case reports and case series in Endodontic journals. Int Endod J 55:185–218

    Article  Google Scholar 

  62. Huang ZW, Zhang XJ, Wu LJ, Hu P, Huang Y, Pan X, Wu CB (2022) Progress on pharmaceutical sciences/pharmacy postgraduate education: a bibliometric perspective. J Pharm Innov 17:1360–1372

    Article  Google Scholar 

  63. Akinpelu EA, Nchu F (2022) A Bibliometric Analysis of Research Trends in Biodegradation of Plastics. Polymers 14:16

    Article  Google Scholar 

  64. Chen P, Bai W, Li X-H, Feng Y, Cheung T, Su Z, Balbuena L, Xiang Y-T (2022) Research on major depression in China: A perspective from bibliometric analysis. J Affect Disord 315:174–181

    Article  Google Scholar 

  65. Almgren M, Edwards K, Karlsson G (2000) Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf A Physicochem 174:3–21

    Article  CAS  Google Scholar 

  66. Pan X, Han K, Peng XS, Yang ZW, Qin LZ, Zhu CN, Huang XT, Shi X, Dian LH, Lu M, Wu CB (2013) Nanostructed Cubosomes as Advanced Drug Delivery System. Curr Pharm Des 19:6290–6297

    Article  CAS  Google Scholar 

  67. Fu RC, Xu HP, Lai YJ, Sun XY, Zhu Z, Zang HC, Wu YB (2022) A VOSviewer-Based Bibliometric Analysis of Prescription Refills. Front Med (Lausanne) 9:13

    Google Scholar 

  68. Tang YL, Xin HJ, Yang F, Long X (2018) A historical review and bibliometric analysis of nanoparticles toxicity on algae. J Nanopart Res 20:17

    Article  Google Scholar 

  69. Teles RHG, Moralles HF, Cominetti MR (2018) Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis. Int J Nanomedicine 13:2321–2336

    Article  CAS  Google Scholar 

  70. Wu HY, Tong LJ, Wang YL, Yan H, Sun ZM (2021) Bibliometric Analysis of Global Research Trends on Ultrasound Microbubble: A Quickly Developing Field. Front Pharmacol 12:18

    Google Scholar 

  71. Percec V, Wilson DA, Leowanawat P, Wilson CJ, Hughes AD, Kaucher MS, Hammer DA, Levine DH, Kim AJ, Bates FS, Davis KP, Lodge TP, Klein ML, DeVane RH, Aqad E, Rosen BM, Argintaru AO, Sienkowska MJ, Rissanen K et al (2011) Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Abstr Pap Am Chem Soc 241:1

    Google Scholar 

  72. Nascimento RF, Avila MF, Taranto OP, Kurozawa LE (2022) Agglomeration in fluidized bed: Bibliometric analysis, a review, and future perspectives. Powder Technol 406:13

    Article  Google Scholar 

  73. Qin FZ, Li JL, Zhang C, Zeng GM, Huang DL, Tan XF, Qin DY, Tan H (2022) Biochar in the 21st century: A data-driven visualization of collaboration, frontier identification, and future trend. Sci Total Environ 818:15

    Article  Google Scholar 

  74. Boyack KW, Klavans R (2010) Co-Citation Analysis, Bibliographic Coupling, and Direct Citation: Which Citation Approach Represents the Research Front Most Accurately? J Am Soc Inf Sci Technol 61:2389–2404

    Article  Google Scholar 

  75. Boyd BJ, Whittaker DV, Khoo SM, Davey G (2006) Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm 309:218–226

    Article  CAS  Google Scholar 

  76. Rizwan SB, Assmus D, Boehnke A, Hanley T, Boyd BJ, Rades T, Hook S (2011) Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur J Pharm Biopharm 79:15–22

    Article  CAS  Google Scholar 

  77. Clogston J, Caffrey M (2005) Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J Control Release 107:97–111

    Article  CAS  Google Scholar 

  78. Larsson K (1989) Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem 93:7304–7314

    Article  CAS  Google Scholar 

  79. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1996) Cubic Lipid−Water Phase Dispersed into Submicron Particles. Langmuir 12:4611–4613

    Article  CAS  Google Scholar 

  80. Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K (1997) Submicron Particles of Reversed Lipid Phases in Water Stabilized by a Nonionic Amphiphilic Polymer. Langmuir 13:6964–6971

    Article  CAS  Google Scholar 

  81. Sagalowicz L, Michel M, Adrian M, Frossard P, Rouvet M, Watzke HJ, Yaghmur A, De Campo L, Glatter O, Leser ME (2006) Crystallography of dispersed liquid crystalline phases studded by cryo-transmission on electron microscopy. J Microsc 221:110–121

    Article  CAS  Google Scholar 

  82. Lan JM, Wei RC, Huang SS, Li DP, Zhao C, Yin L, Wang J (2022) In-depth bibliometric analysis on research trends in fault diagnosis of lithium-ion batteries. J Energy Storage 54:12

    Article  Google Scholar 

  83. Barauskas J, Landh T (2003) Phase behavior of the phytantriol/water system. Langmuir 19:9562–9565

    Article  CAS  Google Scholar 

  84. de Campo L, Yaghmur A, Sagalowicz L, Leser ME, Watzke H, Glatter O (2004) Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir 20:5254–5261

    Article  Google Scholar 

  85. Dong YD, Larson I, Hanley T, Boyd BJ (2006) Bulk and dispersed aqueous phase behavior of phytantriol: Effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir 22:9512–9518

    Article  CAS  Google Scholar 

  86. Angelova A, Angelov B, Mutafchieva R, Lesieur S, Couvreur P (2011) Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery. Acc Chem Res 44:147–156

    Article  CAS  Google Scholar 

  87. Angelov B, Angelova A, Filippov SK, Drechsler M, Stepanek P, Lesieur S (2014) Multicompartment Lipid Cubic Nanoparticles with High Protein Upload: Millisecond Dynamics of Formation. ACS Nano 8:5216–5226

    Article  CAS  Google Scholar 

  88. Morsi NM, Abdelbary GA, Ahmed MA (2014) Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur J Pharm Biopharm 86:178–189

    Article  CAS  Google Scholar 

  89. McClements DJ (2015) Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv Colloid Interf Sci 219:27–53

    Article  CAS  Google Scholar 

  90. Aditya NP, Espinosa YG, Norton IT (2017) Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol Adv 35:450–457

    Article  CAS  Google Scholar 

  91. Gan L, Han S, Shen JQ, Zhu JB, Zhu CL, Zhang XX, Gan Y (2010) Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability. Int J Pharm 396:179–187

    Article  CAS  Google Scholar 

  92. Gan L, Wang J, Jiang M, Bartlett H, Ouyang DF, Eperjesi F, Liu JP, Gan Y (2013) Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today 18:290–297

    Article  CAS  Google Scholar 

  93. Achouri D, Alhanout K, Piccerelle P, Andrieu V (2013) Recent advances in ocular drug delivery. Drug Dev Ind Pharm 39:1599–1617

    Article  CAS  Google Scholar 

  94. Percec V, Leowanawat P, Sun HJ, Kulikov O, Nusbaum CD, Tran TM, Bertin A, Wilson DA, Peterca M, Zhang SD, Kamat NP, Vargo K, Moock D, Johnston ED, Hammer DA, Pochan DJ, Chen YC, Chabre YM, Shiao TC et al (2013) Modular Synthesis of Amphiphilic Janus Glycodendrimers and Their Self-Assembly into Glycodendrimersomes and Other Complex Architectures with Bioactivity to Biomedically Relevant Lectins. J Am Chem Soc 135:9055–9077

    Article  CAS  Google Scholar 

  95. Percec V, Wilson DA, Leowanawat P, Wilson CJ, Hughes AD, Kaucher MS, Hammer DA, Levine DH, Kim AJ, Bates FS, Davis KP, Lodge TP, Klein ML, DeVane RH, Aqad E, Rosen BM, Argintaru AO, Sienkowska MJ, Rissanen K et al (2010) Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures. Science 328:1009–1014

    Article  CAS  Google Scholar 

  96. Hassan W, Zafar M, Hassan H, Kamdem JP, Duarte AE, da Rocha JBT (2020) Ten years of Arabian Journal of Chemistry: A bibliometric analysis. Arab J Chem 13:7720–7743

    Article  CAS  Google Scholar 

  97. Oke JA, Olotu OO, Jen T-C (2022) Atomic layer deposition of chalcogenide thin films: processes, film properties, applications, and bibliometric prospect. J Mater Res Technol 20:991–1019

    Article  CAS  Google Scholar 

  98. Lv Z, Wu L, Lu Y, Liu S, Li Q (2023) Bibliometric analysis of IgG4-related disease research from 2003 to 2022 based on Web of Science Core Collection Databases. Clin Rheumatol 42:15–27

    Article  Google Scholar 

  99. Huang F, Wang L, Jia H (2021) Research trends for papillary thyroid carcinoma from 2010 to 2019: a systematic review and bibliometrics analysis. Medicine (Baltimore) 100:e26100

  100. Jiang X, Sun Y, Qu Y, Zeng H, Yang J, Zhang K, Liu L (2023) The development and future frontiers of global ecological restoration projects in the twenty-first century: a systematic review based on scientometrics. Environ Sci Pollut Res 30:32230–32245

    Article  Google Scholar 

  101. Khan K, Ahmad W, Amin MN, Nazar S (2022) Nano-Silica-Modified Concrete: A Bibliographic Analysis and Comprehensive Review of Material Properties. Nanomaterials 12:29

    Article  Google Scholar 

  102. Gedara NIM, Xu X, DeLong R, Aryal S, Jaberi-Douraki M (2021) Global Trends in Cancer Nanotechnology: A Qualitative Scientific Mapping Using Content-Based and Bibliometric Features for Machine Learning Text Classification. Cancers 13:24

    Google Scholar 

  103. Bodnariuk M, Melentiev R (2019) Bibliometric analysis of micro-nano manufacturing technologies. Nanotechnol Precis Eng 2:61–70

    Article  CAS  Google Scholar 

  104. Xiong WT, Wang S, Wei ZH, Cai YB, Li B, Lin F, Xia DM (2022) Knowledge Domain and Hotspots Predict Concerning Electroactive Biomaterials Applied in Tissue Engineering: A Bibliometric and Visualized Analysis From 2011 to 2021. Front Bioeng Biotechnol 10:16

    Article  Google Scholar 

  105. He T, Wang D, Wu ZF, Huang CL, Xu XY, Xu XQ, Liu CM, Hashimoto K, Yang C (2022) A bibliometric analysis of research on (R)-ketamine from 2002 to 2021. Neuropharmacology 218:8

    Article  Google Scholar 

  106. Liu HZ, Wang Y, Wang QF, Li Z, Zhou YY, Zhang YS, Li SM (2013) Protein-Bearing Cubosomes Prepared by Liquid Precursor Dilution: Inner Ear Delivery and Pharmacokinetic Study Following Intratympanic Administration. J Biomed Nanotechnol 9:1784–1793

    Article  CAS  Google Scholar 

  107. Huang JY, Peng TT, Li YR, Zhan ZW, Zeng YM, Huang Y, Pan X, Wu CY, Wu CB (2017) Ocular Cubosome Drug Delivery System for Timolol Maleate: Preparation, Characterization, Cytotoxicity, Ex Vivo, and In Vivo Evaluation. AAPS PharmSciTech 18:2919–2926

    Article  CAS  Google Scholar 

  108. Muller F, Salonen A, Glatter O (2010) Phase behavior of Phytantriol/water bicontinuous cubic Pn3m cubosomes stabilized by Laponite disc-like particles. J Colloid Interface Sci 342:392–398

    Article  CAS  Google Scholar 

  109. Barauskas J, Johnsson M, Johnson F, Tiberg F (2005) Cubic phase nanoparticles (Cubosome): Principles for controlling size, structure, and stability. Langmuir 21:2569–2577

    Article  CAS  Google Scholar 

  110. Said M, Aboelwafa AA, Elshafeey AH, Elsayed I (2021) Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole. J Drug Deliv Sci Technol 61:11

    Google Scholar 

  111. Azhari H, Younus M, Hook SM, Boyd BJ, Rizwan SB (2021) Cubosomes enhance drug permeability across the blood-brain barrier in zebrafish. Int J Pharm 600:9

    Article  Google Scholar 

  112. Liu ZG, Ni HY, Yu L, Xu SW, Bo RN, Qiu TX, Gu PF, Zhu TY, He J, Wusiman A, Zhu SW, Liu JG, Hu YL, Wang DY (2020) Adjuvant activities of CTAB-modified Polygonatum sibiricum polysaccharide cubosomes on immune responses to ovalbumin in mice. Int J Biol Macromol 148:793–801

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by China Postdoctoral Science Foundation Special Funded Project [grant number 2022T150268] and Guangzhou Science and Technology Plan Project [grant number 202201010589].

Author information

Authors and Affiliations

Authors

Contributions

Ying Huang: Conceptualization, Methodology. Ziyao Chang: Writing-Original draft preparation. Xiao Xia: Writing-Original draft preparation, Data curation. Ziyu Zhao: Data curation. Xuejuan Zhang: Investigation. Zhengwei Huang: Validation. Chuanbin Wu: Funding acquisition, Project administration. Xin Pan: Supervision.

Corresponding authors

Correspondence to Xuejuan Zhang, Zhengwei Huang or Xin Pan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 7170 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Chang, Z., Xia, X. et al. Current and evolving knowledge domains of cubosome studies in the new millennium. J Nanopart Res 25, 176 (2023). https://doi.org/10.1007/s11051-023-05823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05823-1

Keywords

Navigation