Skip to main content
Log in

Synthesis and photocatalytic activity of EuBO3 photocatalyst with different morphological characteristics

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Three kinds of EuBO3 photocatalysts with different morphological characteristics were successfully synthesized using a facile hydrothermal method. The crystal structure, surface chemical composition, and micromorphology features of the EuBO3 photocatalysts were measured using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and BET-specific surface area measuring methods. The optical characteristics of all synthesized photocatalysts were described in detail by ultraviolet-visible spectroscopy and photoluminescence spectroscopy measurements. The photocatalytic activity of all synthesized photocatalysts in the photodegradation of RhB under UV-light irradiation (λ > 254 nm) was determined. The EuBO3(9) catalyst showed the highest photocatalytic activity among three kinds of photocatalysts with different morphologies. The enhanced photocatalytic activity of the EuBO3(9) photocatalyst is primarily attributed to the higher specific surface area than the other samples. Meanwhile, a possible mechanism for photocatalytic degradation was proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liang Q, Chen X, Liu R, Xu K, Luo H (2023) Efficient removal of Cr(VI) by a 3D Z-scheme TiO2-ZnxCd1-xS graphene aerogel via synergy of adsorption and photocatalysis under visible light. J Environ Sci 124:360–370. https://doi.org/10.1016/j.jes.2021.09.037

    Article  Google Scholar 

  2. Narenuch T, Senasu T, Chankhanittha T, Nanan S (2021) Solvothermal synthesis of CTAB capped and SDS capped BiOCl photocatalysts for degradation of rhodamine B (RhB) dye and flfluoroquinolone antibiotics. J Solid State Chem 294:121824. https://doi.org/10.1016/j.jssc.2020.121824

    Article  CAS  Google Scholar 

  3. Wang H, Li X, Zhao X, Li C, Song X, Zhang P, Huo P, Li X (2022) A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin J Catal 43:178–214. https://doi.org/10.1016/S1872-2067(21)63910-4

    Article  CAS  Google Scholar 

  4. Xiao J, Lv J, Lu Q (2022) Building Fe2O3/MoO3 nanorod heterojunction enables better tetracycline photocatalysis. Mater Lett 311:131580. https://doi.org/10.1016/j.matlet.2021.131580

    Article  CAS  Google Scholar 

  5. Yang W, Feng S, Zhang X, Wang Y, Li C, Zhang L, Zhao J, Gurzadyan GG, Tao S (2021) Bodipy-containing porous microcapsules for flow heterogeneous photocatalysis. Appl Mater Interfaces 13:38722–38731. https://doi.org/10.1021/acsami.1c10807

    Article  CAS  Google Scholar 

  6. Yahia B, Faouzi S, Ahmed C, Lounis S, Mohamed T (2022) A new hybrid process for amoxicillin elimination by combination of adsorption and photocatalysis on (CuO/AC) under solar irradiation. J Mol Struct 1261:132769. https://doi.org/10.1016/j.molstruc.2022.132769

    Article  CAS  Google Scholar 

  7. Li Z, Ma T, Zhang X, Wang Z (2021) In2Se3/CdS nanocomposites as high efficiency photocatalysts for hydrogen production under visible light irradiation. Int J Hydrogen Energy 46:15539–15549. https://doi.org/10.1016/j.ijhydene.2021.02.098

    Article  CAS  Google Scholar 

  8. Amiri O, Beshkar F, Ahmed SS, Mahmood PH, Dezaye AA (2021) Hierarchical p-BiOI/n-BiPO4 heterojunction nanocomposite with enhanced visible-light photocatalytic desulfurization of thiophene under mild conditions. Int J Hydrogen Energy 46:6547–6560. https://doi.org/10.1016/j.ijhydene.2020.11.181

    Article  CAS  Google Scholar 

  9. Feng C, Chen Z, Jing J, Sun M, Tian J, Lu G, Ma L, Li X, Hou J (2021) Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators. J Mater Sci Technol 80:75–83. https://doi.org/10.1016/j.jmst.2020.11.047

    Article  CAS  Google Scholar 

  10. Wei Y, Zhang Y, Geng W, Su H, Long M (2019) Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Appl Catal B 259:118084. https://doi.org/10.1016/j.apcatb.2019.118084

    Article  CAS  Google Scholar 

  11. Huang H, He Y, He R, Lin Z, Zhang Y, Wang S (2014) Y(IO3)3 as a novel photocatalyst: synthesis, characterization, and highly efficient photocatalytic activity. Inorg Chem 53:8114–8119. https://doi.org/10.1021/ic501127d

    Article  CAS  Google Scholar 

  12. Zhu W, Mi J, Fu Y, Cui D, Lü C (2021) Multiple-cores@shell clustered carbon dots/P25/rGO nanocomposite as robust visible-light photocatalyst for organic pollutant degradation and water disinfection. Appl Surf Sci 538:148087. https://doi.org/10.1016/j.apsusc.2020.148087

    Article  CAS  Google Scholar 

  13. Ikeda T, Fujiyoshi S, Kato H, Kudo A, Onishi H (2006) Time-resolved infrared spectroscopy of K3Ta3B2O12 photocatalysts for water splitting. J Phys Chem B 110:7883–7886. https://doi.org/10.1021/jp057536x

    Article  CAS  Google Scholar 

  14. Toshiyasu K, Hiroaki O, Yugo M, Hideki K, Akihiko K (2006) Highly efficient water splitting over K3Ta3B2O12 photocatalyst without loading cocatalyst. Chem Lett 35:274–275. https://doi.org/10.1246/cl.2006.274

    Article  Google Scholar 

  15. Liu J, Wen S, Zou X, Zuo F, Feng P (2013) Visible-light-responsive copper (II) borate photocatalysts with intrinsic midgap states for water splitting. J Mater Chem A 1:1553–1556. https://doi.org/10.1039/C2TA00522K

    Article  CAS  Google Scholar 

  16. Huang H, He Y, Lin Z, Kang L, Zhang Y (2013) Two novel bi-based borate photocatalysts: crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation. J Mater Chem C 117:22986–22994. https://doi.org/10.1021/jp4084184

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhai Y, Yu Y, Su Z, Fan X (2020) The halogen atoms induced different oxygen vacancies in RbNa2B6O10X (X = Cl, Br) for the enhanced photo-dechlorination properties. Appl Surf Sci 504:144498. https://doi.org/10.1016/j.apsusc.2019.144498

    Article  CAS  Google Scholar 

  18. Yuan J, Wu Q, Zhang P, Yao J, He T, Cao Y (2012) Synthesis of indium borate and its application in photodegradation of 4-chlorophenol. Environ Sci Technol 46:2330–2336. https://doi.org/10.1021/es203333k

    Article  CAS  Google Scholar 

  19. Liu R, Xu H, Xiao C, Liu H, Zhong S, Zeng C (2018) Preparation, luminescence and highly sensitive oxalate sensor of porous EuBO3 microwafers. Opt Mater 86:360–365. https://doi.org/10.1016/j.optmat.2018.10.030

    Article  CAS  Google Scholar 

  20. Sohn Y (2014) Photoluminescence imaging of EuBO3, TbBO3, Eu(III)-BOx, and Tb(III)-BOx nanostructures. Ceram Int 40:2467–2475. https://doi.org/10.1016/j.ceramint.2013.08.022

    Article  CAS  Google Scholar 

  21. Assis GC, Silva IMA, Santos TVD, Meneghetti MR, Meneghetti SMP (2021) Photocatalytic properties of SnO2/MoO3 mixed oxides and their relation to the electronic properties and surface acidity. J Photochem Photobiol A 407:113035. https://doi.org/10.1016/j.jphotochem.2020.113035

    Article  CAS  Google Scholar 

  22. Akhundi A, Moshfegh AZ, Habibi-Yangjeh A, Sillanpää M (2022) Simultaneous dual-functional photocatalysis by g-C3N4-based nanostructures. ACS EST Engg 2:564–585. https://doi.org/10.1021/acsestengg.1c00346

    Article  CAS  Google Scholar 

  23. Mercier F, Alliot C, Bion L, Thromat N, Toulhoat P (2006) XPS study of Eu(III) coordination compounds: core levels binding energies in solid mixed-oxo-compounds EumXxOy. J Electron Spectrosc Relat Phenom 150:21–26. https://doi.org/10.1016/j.elspec.2005.08.003

    Article  CAS  Google Scholar 

  24. He X, Yang H (2014) A novel strategy to the synthesis of Na3YSi2O7 from natural palygorskite. Appl Clay Sci 101:339–344. https://doi.org/10.1016/j.clay.2014.08.025

    Article  CAS  Google Scholar 

  25. Liang J, Zhu G, Liu P, Luo X, Tan C, Jin L, Zhou J (2014) Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity. Superlattices Microstruct 72:272–282. https://doi.org/10.1016/j.spmi.2014.05.005

    Article  CAS  Google Scholar 

  26. Ma M, Yang Y, Chen Y, Ma Y, Lyu P, Cui A, Huang W, Zhang Z, Li Y, Si F (2021) Photocatalytic degradation of MB dye by the magnetically separable 3D flower-like Fe3O4/SiO2/MnO2/BiOBr-Bi photocatalyst. J Alloys Compd 861:158256. https://doi.org/10.1016/j.jallcom.2020.158256

    Article  CAS  Google Scholar 

  27. Alatawi NM, Saad LB, Soltane L, Moulahi A, Mjejri I, Sediri F (2021) Enhanced solar photocatalytic performance of Cu-doped nanosized ZnO. Polyhedron 197:115022. https://doi.org/10.1016/j.poly.2021.115022

    Article  CAS  Google Scholar 

  28. Luo H, Yan M, Wu Y, Lin X, Yan Y (2021) Facile synthesis of PVDF photocatalytic membrane based on NCQDs/ BiOBr/TiO2 heterojunction for effective removal of tetracycline. Mater Sci Eng B 265:114996. https://doi.org/10.1016/j.mseb.2020.114996

    Article  CAS  Google Scholar 

  29. Wang H, Wu Y, Xu B-Q (2005) Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis. Appl Catal B 59:139–146. https://doi.org/10.1016/j.apcatb.2005.02.001

    Article  CAS  Google Scholar 

  30. Xu J-H, Li J, Dai W-L, Cao Y, Li H, Fan K (2008) Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response. Appl Catal B 79:72–80. https://doi.org/10.1016/j.apcatb.2007.10.008

    Article  CAS  Google Scholar 

  31. Chawla H, Chandra A, Ingole PP, Garg S (2021) Recent advancements in enhancement of photocatalytic activity using bismuth-based metal oxides Bi2MO6 (M =W, Mo, Cr) for environmental remediation and clean energy production. J Ind Eng Chem 95:1–15. https://doi.org/10.1016/j.jiec.2020.12.028

    Article  CAS  Google Scholar 

  32. Huang X, Guo Q, Yan B, Liu H, Chen K, Wei S, Wu Y, Wang L (2021) Study on photocatalytic degradation of phenol by BiOI/Bi2WO6 layered heterojunction synthesized by hydrothermal method. J Mol Liq 322:114965. https://doi.org/10.1016/j.molliq.2020.114965

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Project of Tangshan (Nos. 21130235C, 22130218G) and the Tangshan Talent Funding Project (A202110036).

Author information

Authors and Affiliations

Authors

Contributions

WZ: Conceptualization, Methodology, Investigation, Preparation, Experiment, Writing. JL: Draft visualization, Experiment, Analyzing writing. XW: Investigation. HZ: Investigation. XW: Conceptualization. BH: Guiding. All authors read the paper and commented on the text.

Corresponding author

Correspondence to Wenwu Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Table S1. Parameters for the calculation of crystallite sizes of EuBO3(8). Table S2. Parameters for the calculation of crystallite sizes of EuBO3(8.5). Table S3. Parameters for the calculation of crystallite sizes of EuBO3(9). (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhou, H., Wang, X. et al. Synthesis and photocatalytic activity of EuBO3 photocatalyst with different morphological characteristics. J Nanopart Res 25, 63 (2023). https://doi.org/10.1007/s11051-023-05713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05713-6

Keywords

Navigation