Skip to main content
Log in

Performance optimization of phenylethylammonium-formamidinium tin iodide perovskite solar cell by contrasting various ETL and HTL materials

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, an eco-friendly (i.e., lead-free) tin-based halide perovskite solar cell (PSC) is proposed with remarkable high power conversion efficiency (PCE). To optimize the performance of the device, the architecture of a tin-based perovskite layer (PEA)0.2(FA)0.8SnI3 (PEA: phenyl ethyl ammonium, FA: formamidinium) with TiO2, IGZO, SnO2, and PC60BM as an electron transport layer (ETL); Spiro-OMeTAD, P3HT, PEDOT: PSS, and Cu2O as a Hole transport layer (HTL); and Au as an electrode has been investigated. The effect of numerous device parameters including absorber layer thickness, defect density, temperature, interface trap density, doping concentration, and bandgap, on photovoltaic device performance, has been studied. The superior device configuration is found to be IGZO/(PEA)0.2(FA)0.8SnI3/Cu2O/Au with 26.45% PCE, 1.0028 V open-circuit voltage (VOC), 31.89 mA/cm2 short circuit current density (JSC), and 82.70% fill factor (FF). Such a study shows that upcoming lead-free perovskite solar cells have a lot of potential to develop a wide range of eco-friendly photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article. 

References

  1. Chen ZAY, Yan J (2016) Optimal design and simulation of high-performance organic-metal halide perovskite solar cells. IEEE J Quantum Electron 52(6):1–6. https://doi.org/10.1109/jqe.2016.2563783

    Article  Google Scholar 

  2. Mahmud MA, Duong T, Peng J, Wu Y, Shen H, Walter D, Nguyen HT et al (2022) Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D–3D perovskite solar cells: a review. Adv Func Mater 32(3):2009164. https://doi.org/10.1002/adfm.202009164

    Article  CAS  Google Scholar 

  3. Shi Z, Jayatissa AH (2018) Perovskites-based solar cells: a review of recent progress, materials and processing methods. Mater 11(5):729. https://doi.org/10.3390/ma11050729

    Article  CAS  Google Scholar 

  4. Dixit H, Boro B, Ghosh S, Paul M, Kumar A, Singh T (2022) Assessment of lead-free tin halide perovskite solar cells using J-V hysteresis. Physica status solidi (a) 219(11):2100823. https://doi.org/10.1002/pssa.202100823

    Article  CAS  Google Scholar 

  5. Pitaro M, Tekelenburg EK, Shao S, Loi MA (2022) Tin halide perovskites: from fundamental properties to solar cells. Adv Mater 34(1):2105844. https://doi.org/10.1002/adma.202105844

    Article  CAS  Google Scholar 

  6. Heo JH, Kim J, Kim H, Moon SH, Im SH, Hong KH (2018) Roles of SnX2 (X= F, Cl, Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells. J Phys Chem Lett 9(20):6024–6031. https://doi.org/10.1021/acs.jpclett.8b02555

    Article  CAS  Google Scholar 

  7. Dixit H, Punetha D, Pandey SK (2019) Improvement in performance of lead-free inverted perovskite solar cell by optimization of solar parameters. Optik 179:969–976. https://doi.org/10.1016/j.ijleo.2018.11.028

    Article  CAS  Google Scholar 

  8. Green MA et al (2017) Solar cell efficiency tables (version 52). Prog Photovolt 26;427–436. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html

  9. Lee JW, Lee TY, Yoo PJ, Grätzel M, Mhaisalkar S, Park NG (2014) Rutile TiO2-based perovskite solar cells. J Mater Chem A 2(24):9251–9259. https://doi.org/10.1039/c4ta01786b

    Article  CAS  Google Scholar 

  10. Ji L, Zhang T, Wang Y, Liu D, Chen H, Zheng H, Peng X, Yuan S, Chen ZD, Li S (2022) “Regulating crystallization dynamics and crystal orientation of methylammonium tin iodide enables high-efficiency lead-free perovskite solar cells.” Nanoscale 14(4):12119–1225

    Article  Google Scholar 

  11. Sun N, Gao W, Dong He, Liu Y, Liu X, Zhongbin Wu, Song L, Ran C, Chen Y (2021) Architecture of pin Sn-based perovskite solar cells: characteristics, advances, and perspectives. ACS Energy Lett 6(8):2863–2875. https://doi.org/10.1021/acsenergylett.1c01170

    Article  CAS  Google Scholar 

  12. Kumar M, Raj A, Kumar A, Anshul A (2020) An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation. Opt Mater 108:110213. https://doi.org/10.1016/j.optmat.2020.110213

    Article  CAS  Google Scholar 

  13. Mandadapu U, Vedanayakam UV, Thyagarajan K (2017) Simulation and analysis of lead-based perovskite solar cell using SCAPS-1D. Indian J Sci Technol 10(1):8. https://doi.org/10.17485/ijst/2017/v11i10/110721

    Article  CAS  Google Scholar 

  14. Nishimura K, Kamarudin MA, Hirotani D, Hamada K, Shen Q, Iikubo S, Minemoto T, Yoshino K, Hayase S (2020) Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energ 74:104858. https://doi.org/10.1016/j.nanoen.2020.104858

    Article  CAS  Google Scholar 

  15. Chen Ke, Pan Wu, Yang W, Rui Su, Luo D, Yang X, Yongguang Tu, Zhu R, Gong Q (2018) Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energ 49:411–418. https://doi.org/10.1016/j.nanoen.2018.05.006

    Article  CAS  Google Scholar 

  16. Bishnoi S, Pandey SK (2018) Device performance analysis for lead-free perovskite solar cell optimization. IET Optoelectron 12(4):185–190. https://doi.org/10.1049/iet-opt.2017.0135

    Article  Google Scholar 

  17. Mutalib MA, Ludin MA, Ruzalman NAAN, Barrioz V, Sepeai V, Teridi MAM, Su’ait MS, Ibrahim MA, Sopian K (2018) Progress towards highly stable and lead-free perovskite solar cells. Mater Renew Sustain Energ 7(2):1–13. https://doi.org/10.1007/s40243-018-0113-0

    Article  Google Scholar 

  18. Lucija R, Gehlhaar R, Merckx T, Qiu W, Paetzold UW, Fledderus H, Poortmans J (2017) Interconnection optimization for highly efficient perovskite modules. Ieee J Photovolt 7(1):404–408. https://doi.org/10.1109/jphotov.2016.2626144

    Article  Google Scholar 

  19. Jing DH, Wang WC, Zhu JZ (2016) Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chinese Phys B 25(10):108802. https://doi.org/10.1088/1674-1056/25/10/108802

    Article  CAS  Google Scholar 

  20. Nietzold SMT, Hall GN, West B, Werner J, Niesen B, Ballif C, Rose V, Fenning DP, Bertoni MI (2017) Charge collection in hybrid perovskite solar cells: relation to the nanoscale elemental distribution. Ieee J Photovolt 7(2):590–597. https://doi.org/10.1109/jphotov.2016.2633801

    Article  Google Scholar 

  21. Lanzetta L, Webb T, Zibouche N, Liang X, Ding D, Min G, Westbrook RJE et al (2021) the Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat Commun 12(1):1–11. https://doi.org/10.1038/s41467-021-22864-z

    Article  CAS  Google Scholar 

  22. Bouhjar F, Derbali L, Marí B (2020) High-performance novel flexible perovskite solar cell based on a low-cost-processed ZnO: Co electron transport layer. Nano Res 13(9):2546–2555. https://doi.org/10.1007/s12274-020-2896-4

    Article  CAS  Google Scholar 

  23. Jayan KD, Sebastian V (2021) Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Solar Energ 217:40–48. https://doi.org/10.1016/j.solener.2021.01.058

    Article  CAS  Google Scholar 

  24. Lakhdar N, Hima A (2020) Electron transport material effect on the performance of perovskite solar cells based on CH3NH3GeI3. Opt Mater 99:109517. https://doi.org/10.1016/j.optmat.2019.109517

    Article  CAS  Google Scholar 

  25. Dixit H, Punetha D, Pandey SK (2019) Performance investigation of Mott-insulator LaVO3 as a photovoltaic absorber material. J Electron Mater 48(12):7696–7703. https://doi.org/10.1007/s11664-019-07581-0

    Article  CAS  Google Scholar 

  26. Behrouznejad F, Shahbazi S, Taghavinia N, Wu HP, Diau EWG (2016) A study on utilizing different metals as the back contact of CH 3 NH 3 PbI 3 perovskite solar cells. J Mater Chem A 4(35):13488–13498. https://doi.org/10.1039/c6ta05938d

    Article  CAS  Google Scholar 

  27. Bag A, Radhakrishnan R, Nekovei R, Jeyakumar R (2020) Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol Energ 196:177–182. https://doi.org/10.1016/j.solener.2019.12.014

    Article  CAS  Google Scholar 

  28. Olyaeefar B, Kandjani SA, Asgari A (2018) Classical modelling of grain size and boundary effects in polycrystalline perovskite solar cells.". Sol Energy Mater Sol Cells 180:76–82. https://doi.org/10.1016/j.solmat.2018.02.026

    Article  CAS  Google Scholar 

  29. Liao W, Zhao D, Yu Y, Grice CR, Wang C, Cimaroli AJ, Schulz P et al (2016) Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%". Adv Mater 28(42):9333–9340. https://doi.org/10.1002/adma.201602992

    Article  CAS  Google Scholar 

  30. Chen Y, Shen H, Altermatt PP (2014) Analysis of recombination losses in screen-printed aluminum-alloyed back surface fields of silicon solar cells by numerical device simulation. Sol Energy Mater Sol Cells 120:356–362. https://doi.org/10.1016/j.solmat.2013.05.051

    Article  CAS  Google Scholar 

  31. Shukla R, Kumar RR, Pandey SK (2021) Theoretical study of charge carrier lifetime and recombination on the performance of eco-friendly perovskite solar cell. IEEE Trans Electron Devices 68(7):3446–3452. https://doi.org/10.1109/ted.2021.3078063

    Article  CAS  Google Scholar 

  32. Chandel R, Dhawan D, Gupta N (2022) Optimization of highly efficient and eco-friendly EA-substituted tin based perovskite solar cell with different hole transport material. Opt Quant Electron 54(6):1–13. https://doi.org/10.1007/s11082-022-03740-6

    Article  CAS  Google Scholar 

  33. Singh N, Agarwal A, Agarwal M (2021) Numerical simulation of highly efficient lead-free perovskite layers for the application of all-perovskite multi-junction solar cell. Superlattice Microst 149:106750. https://doi.org/10.1016/j.spmi.2020.106750

    Article  CAS  Google Scholar 

  34. Raj A, Kumar M, Bherwani H, Gupta A, Anshul A (2021) Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via SCAPS simulation. J Vacuum Sci Technol B Nanotechnol Microelectron: Mater, Proc, Meas, Phenom 39(1):012401. https://doi.org/10.1116/6.0000718

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Marc Burgelman, the Electronics and Information Systems (ELIS), University of Gent, Belgium, for providing us free access to the SCAPS 1D simulation tool on request.

Author information

Authors and Affiliations

Authors

Contributions

Ajay Kumar: conceptualization, investigation, writing—original draft preparation.

Deepak Punetha: conceptualization, writing—original draft preparation.

Subhananda Chakrabarti: supervision, writing, and editing.

Corresponding author

Correspondence to Subhananda Chakrabarti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Punetha, D. & Chakrabarti, S. Performance optimization of phenylethylammonium-formamidinium tin iodide perovskite solar cell by contrasting various ETL and HTL materials. J Nanopart Res 25, 52 (2023). https://doi.org/10.1007/s11051-023-05702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05702-9

Keywords

Navigation