Skip to main content

Advertisement

Log in

Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1–100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.

Pathogen detection: culture plate to aptamer nanotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens Bioelectron 68:149–155. doi:10.1016/j.bios.2014.12.040

    Article  Google Scholar 

  • Ahmed W, Neller R, Katouli M (2005) Host species-specific metabolic fingerprint database for enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters. Appl Environ Microbiol 71:4461–4468. doi:10.1128/AEM.71.8.4461-4468.2005

    Article  Google Scholar 

  • Ahmed D, Islam MS, Begum YA, Janzon A, Qadri F, Sjoling A (2013) Presence of enterotoxigenic Escherichia coli in biofilms formed in water containers in poor households coincides with epidemic seasons in Dhaka. J Appl Microbiol 114:1223–1229. doi:10.1111/jam.12109

    Article  Google Scholar 

  • Baudart J, Lemarchand K, Brisabois A, Lebaron P (2000) Diversity of Salmonella strains isolated from the aquatic environment as determined by serotyping and amplification of the ribosomal DNA spacer regions. Appl Environ Microbiol 66:1544–1552

    Article  Google Scholar 

  • Bitton G (2014) Microbiology of drinking water production and distribution, 1st ed. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; p. 312.

  • Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B (2000) Salmonella nomenclature. J Clin Microbiol 38:2465–2467

    Google Scholar 

  • Bruno JG, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19:427–435. doi:10.1007/s10895-008-0429-8

    Article  Google Scholar 

  • Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC (2013) Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep 3:1863. doi:10.1038/srep01863

    Article  Google Scholar 

  • Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U (2010) Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 300:205–211. doi:10.1016/j.ijmm.2009.07.002

    Article  Google Scholar 

  • Driskell JD, Tripp RA (2009) Emerging technologies in nanotechnology-based pathogen detection. Clin Microbiol Newsl 31:137–144. doi:10.1016/j.clinmicnews.2009.08.003

    Article  Google Scholar 

  • Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchim Acta 181:647–653. doi:10.1007/s00604-014-1170-4

    Article  Google Scholar 

  • Dwivedi HP, Smiley RD, Jaykus LA (2013) Selection of DNA aptamers for capture and detection of Salmonella typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:3677–3686. doi:10.1007/s00253-013-4766-4

    Article  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi:10.1038/346818a0

    Article  Google Scholar 

  • Fabbro C, Cataletto B, Del Negro P (2010) Detection of pathogenic Vibrio parahaemolyticus through biochemical and molecular-based methodologies in coastal waters of the Gulf of Trieste (North Adriatic Sea). FEMS Microbiol Lett 307:158–164. doi:10.1111/j.1574-6968.2010.01969.x

    Article  Google Scholar 

  • Gopinath SC, Tang TH, Chen Y, Citartan M, Lakshmipriya T (2014) Bacterial detection: from microscope to smartphone. Biosens Bioelectron 60:332–342. doi:10.1016/j.bios.2014.04.014

    Article  Google Scholar 

  • Hamelin K, Bruant G, El-Shaarawi A, Hill S, Edge TA, Bekal S, Fairbrother JM, Harel J, Maynard C, Masson L, Brousseau R (2006) A virulence and antimicrobial resistance DNA microarray detects a high frequency of virulence genes in Escherichia coli isolates from Great Lakes recreational waters. Appl Environ Microbiol 72:4200–4206. doi:10.1128/AEM.00137-06

    Article  Google Scholar 

  • Hamner S, Broadaway SC, Mishra VB, Tripathi A, Mishra RK, Pulcini E, Pyle BH, Ford TE (2007) Isolation of potentially pathogenic Escherichia coli O157:H7 from the Ganges River. Appl Environ Microbiol 73:2369–2372. doi:10.1128/AEM.00141-07

    Article  Google Scholar 

  • Hayat A, Marty JL (2014) Aptamer based electrochemical sensors for emerging environmental pollutants. Front Chem 2:41. doi:10.3389/fchem.2014.00041

    Article  Google Scholar 

  • Horseman MA, Surani S (2011) A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int J Infect Dis 15:e157–e166. doi:10.1016/j.ijid.2010.11.003

    Article  Google Scholar 

  • Joshi R, Janagama H, Dwivedi HP, Senthil Kumar TM, Jaykus LA, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23:20–28. doi:10.1016/j.mcp.2008.10.006

    Article  Google Scholar 

  • Jyoti A, Ram S, Vajpayee P, Singh G, Dwivedi PD, Jain SK, Shanker R (2010) Contamination of surface and potable water in South Asia by Salmonellae: culture-independent quantification with molecular beacon real-time PCR. Sci Total Environ 408:1256–1263. doi:10.1016/j.scitotenv.2009.11.056

    Article  Google Scholar 

  • Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62:408–423. doi:10.1016/j.addr.2009.11.013

    Article  Google Scholar 

  • Khan FY, Elzouki AN (2014) Clostridium difficile infection: a review of the literature. Asian Pac J Trop Med 7S1:S6–S13. doi:10.1016/S1995-7645(14)60197-8

    Article  Google Scholar 

  • Kim YS, Chung J, Song MY, Jurng J, Kim BC (2014) Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens Bioelectron 54:195–198. doi:10.1016/j.bios.2013.11.003

    Article  Google Scholar 

  • Lanata CF (2003) Studies of food hygiene and diarrhoeal disease. Int J Environ Health Res 13(Suppl 1):S175–S183. doi:10.1080/0960312031000102921

    Article  Google Scholar 

  • Lata P, Ram S, Agrawal M, Shanker R (2009) Real time PCR for the rapid detection of vanA gene in surface waters and aquatic macrophyte by molecular beacon probe. Environ Sci Technol 43:3343–3348

    Article  Google Scholar 

  • Letchumanan V, Chan KG, Lee LH (2014) Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 5:705. doi:10.3389/fmicb.2014.00705

    Article  Google Scholar 

  • Levine MM (1987) Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J Infect Dis 155:377–389

    Article  Google Scholar 

  • Lothigius A, Janzon A, Begum Y, Sjoling A, Qadri F, Svennerholm AM, Bolin I (2008) Enterotoxigenic Escherichia coli is detectable in water samples from an endemic area by real-time PCR. J Appl Microbiol 104:1128–1136. doi:10.1111/j.1365-2672.2007.03628.x

    Article  Google Scholar 

  • Luo Z, Gu G, Giurcanu MC, Adams P, Vellidis G, van Bruggen AH, Wright AC (2014) Development of a novel cross-streaking method for isolation, confirmation, and enumeration of Salmonella from irrigation ponds. J Microbiol Methods 101:86–92. doi:10.1016/j.mimet.2014.03.012

    Article  Google Scholar 

  • Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z (2014) An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods 98:94–98. doi:10.1016/j.mimet.2014.01.003

    Article  Google Scholar 

  • Mairal T, Ozalp VC, Lozano Sanchez P, Mir M, Katakis I, O'Sullivan CK (2008) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390:989–1007. doi:10.1007/s00216-007-1346-4

    Article  Google Scholar 

  • McEgan R, Rodrigues CA, Sbodio A, Suslow TV, Goodridge LD, Danyluk MD (2013) Detection of Salmonella spp. from large volumes of water by modified Moore swabs and tangential flow filtration. Lett Appl Microbiol 56:88–94. doi:10.1111/lam.12016

    Article  Google Scholar 

  • Moon J, Kim G, Park S (2014) Development of ssDNA aptamers for the capture and detection of Salmonella typhimurium. Anal Methods 6:7442–7448. doi:10.1039/C4AY01035C

    Article  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201

    Google Scholar 

  • Nigan PK, Nigam A (2010) Botulinum toxin. Indian J Dermatol 55:8–14. doi:10.4103/0019-5154.60343

    Article  Google Scholar 

  • Orsi RH, Stoppe NC, Sato MI, Gomes TA, Prado PI, Manfio GP, Ottoboni LM (2007) Genetic variability and pathogenicity potential of Escherichia coli isolated from recreational water reservoirs. Res Microbiol 158:420–427. doi:10.1016/j.resmic.2007.02.009

    Article  Google Scholar 

  • Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water resources by pathogenic bacteria. AMB Express 4:51. doi:10.1186/s13568-014-0051-x

    Article  Google Scholar 

  • Paniel N, Baudart J, Hayat A, Barthelmebs L (2013) Aptasensor and genosensor methods for detection of microbes in real world samples. Methods 64:229–240. doi:10.1016/j.ymeth.2013.07.001

    Article  Google Scholar 

  • Patel CB, Vajpayee P, Singh G, Upadhyay RS, Shanker R (2011) Contamination of potable water by enterotoxigenic Escherichia coli: qPCR based culture-free detection and quantification. Ecotoxicol Environ Saf 74:2292–2298. doi:10.1016/j.ecoenv.2011.07.022

    Article  Google Scholar 

  • Philpott DJ, Edgeworth JD, Sansonetti PJ (2000) The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philos Trans R Soc Lond Ser B Biol Sci 355:575–586

    Article  Google Scholar 

  • Ram S, Vajpayee P, Shanker R (2008a) Rapid culture-independent quantitative detection of enterotoxigenic Escherichia coli in surface waters by real-time PCR with molecular beacon. Environ Sci Technol 42:4577–4582

    Article  Google Scholar 

  • Ram S, Vajpayee P, Shanker R (2008b) Contamination of potable water distribution systems by multiantimicrobial-resistant enterohemorrhagic Escherichia coli. Environ Health Perspect 116:448–452. doi:10.1289/ehp.10809

    Google Scholar 

  • Ram S, Vajpayee P, Singh RL, Shanker R (2009) Surface water of a perennial river exhibits multi-antimicrobial resistant shiga toxin and enterotoxin producing Escherichia coli. Ecotoxicol Environ Saf 72:490–495. doi:10.1016/j.ecoenv.2008.06.006

  • Ram S, Vajpayee P, Dwivedi PD, Shanker R (2011) Culture-free detection and enumeration of STEC in water. Ecotoxicol Environ Saf 74:551–557. doi:10.1016/j.ecoenv.2011.01.019

    Article  Google Scholar 

  • Rashid A, Haley BJ, Rajabov M, Ahmadova S, Gurbanov S, Colwell RR, Huq A (2013) Detection of Vibrio cholerae in environmental waters including drinking water reservoirs of Azerbaijan. Environ Microbiol Rep 5:30–38. doi:10.1111/j.1758-2229.2012.00369.x

    Article  Google Scholar 

  • Reidl J, Klose KE (2002) Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 26(2):125–139

    Article  Google Scholar 

  • Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468. doi:10.1038/344467a0

    Article  Google Scholar 

  • Rodriguez-Castro A, Ansede-Bermejo J, Blanco-Abad V, Varela-Pet J, Garcia-Martin O, Martinez-Urtaza J (2010) Prevalence and genetic diversity of pathogenic populations of Vibrio parahaemolyticus in coastal waters of Galicia, Spain. Environ Microbiol Rep 2:58–66. doi:10.1111/j.1758-2229.2009.00064.x

    Article  Google Scholar 

  • Rosenberg Goldstein RE et al (2014) Detection of vancomycin-resistant enterococci (VRE) at four U.S. wastewater treatment plants that provide effluent for reuse. Sci Total Environ 466-467:404–411. doi:10.1016/j.scitotenv.2013.07.039

    Article  Google Scholar 

  • Schroeder GN, Hilbi H (2008) Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21:134–156. doi:10.1128/CMR.00032-07

    Article  Google Scholar 

  • Shanker R, Singh G, Jyoti A, Dwivedi PD, Singh SP (2014) Nanotechnology and detection of microbial pathogens. In: Verma A, Singh A (eds) Animal biotechnology: models in discovery and translation. American Press, pp 525–539

  • Sharma TK, Shukla R (2014) Nucleic acid aptamers as an emerging diagnostic tool for animal pathogens. Adv Anim Vet Sci 2:50–55

    Google Scholar 

  • Singh G, Vajpayee P, Ram S, Shanker R (2010) Environmental reservoirs for enterotoxigenic Escherichia coli in south Asian Gangetic riverine system. Environ Sci Technol 44:6475–6480. doi:10.1021/es1004208

    Article  Google Scholar 

  • Singh G, Vajpayee P, Rani N, Jyoti A, Gupta KC, Shanker R (2012) Bio-capture of S. typhimurium from surface water by aptamer for culture-free quantification. Ecotoxicol Environ Saf 78:320–326. doi:10.1016/j.ecoenv.2011.11.039

    Article  Google Scholar 

  • Singh G, Vajpayee P, Bhatti S, Ronnie N, Shah N, McClure P, Shanker R (2013) Determination of viable Salmonellae from potable and source water through PMA assisted qPCR Ecotoxicol Environ Saf 93:121–127. doi:10.1016/j.ecoenv.2013.02.017

  • Singh G, Vajpayee P, Rani N, Amoah ID, Stenström TA, Shanker R (2016) Exploring the potential reservoirs of non specific TEM beta lactamase (bla TEM) gene in the Indo-Gangetic region: a risk assessment approach to predict health hazards. J Hazard Mater 314:121–128. doi:10.1016/j.jhazmat.2016.04.036

    Article  Google Scholar 

  • Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC, trends Anal Chem 27:108–117. doi:10.1016/j.trac.2007.12.004

    Article  Google Scholar 

  • Suh SH, Dwivedi HP, Choi SJ, Jaykus LA (2014) Selection and characterization of DNA aptamers specific for Listeria species. Anal Biochem 459:39–45. doi:10.1016/j.ab.2014.05.006

    Article  Google Scholar 

  • Syed MA (2014) Advances in nanodiagnostic techniques for microbial agents. Biosens Bioelectron 51:391–400. doi:10.1016/j.bios.2013.08.010

    Article  Google Scholar 

  • Tam CC, O'Brien SJ, Adak GK, Meakins SM, Frost JA (2003) Campylobacter coli—an important food-borne pathogen. J Infect 47:28–32

    Article  Google Scholar 

  • Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200. doi:10.1016/j.bioeng.2007.03.003

  • Torres-Chavolla E, Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron 24:3175–3182. doi:10.1016/j.bios.2008.11.010

    Article  Google Scholar 

  • Tu ZC, Gaudreau C, Blaser MJ (2005) Mechanisms underlying Campylobacter fetus pathogenesis in humans: surface-layer protein variation in relapsing infections. J Infect Dis 191:2082–2089. doi:10.1086/430349

    Article  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  Google Scholar 

  • Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA (2014) Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9:361–377. doi:10.2217/fmb.13.168

    Article  Google Scholar 

  • Vikesland PJ, Wigginton KR (2010) Nanomaterial enabled biosensors for pathogen monitoring—a review. Environ Sci Technol 44:3656–3669. doi:10.1021/es903704z

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. Geneva: World Health Organization.

  • WHO/UNICEF (2013) Progress on drinking water and sanitation: 2012 update WHO/UNICEF.

  • World Health Organization (2015). Water sanitation and health. Web: http://www.who.int/water_sanitation_health/diseases. Assessed on 17 February 2015

  • Wu W, Zhang J, Zheng M, Zhong Y, Yang J, Zhao Y, Wu W, Ye W, Wen J, Wang Q, Lu J (2012a) An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PLoS One 7:e48999. doi:10.1371/journal.pone.0048999

    Article  Google Scholar 

  • Wu WH, Li M, Wang Y, Ouyang HX, Wang L, Li CX, Cao YC, Meng QH, Lu JX (2012b) Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res Lett 7:658. doi:10.1186/1556-276X-7-658

    Article  Google Scholar 

  • Wu S, Duan N, Shi Z, Fang C, Wang Z (2014a) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86:3100–3107. doi:10.1021/ac404205c

    Article  Google Scholar 

  • Wu W, Fang Z, Zhao S, Lu X, Yu L, Mei T, Zeng L (2014b) A simple aptamer biosensor for Salmonellae enteritidis based on fluorescence-switch signaling graphene oxide. RSC Adv 4:22009–22012. doi:10.1039/C4RA01901F

    Article  Google Scholar 

  • Wu W, Li J, Pan D, Li J, Song S, Rong M, Li Z, Gao J, Lu J (2014c) Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella typhimurium. ACS Appl Mater Interfaces 6:16974–16981. doi:10.1021/am5045828

    Article  Google Scholar 

  • Xu L, Wang R, Callaway Z, Li Y (2015) A fluorescent aptasensor coupled with nanobeads-based immunomagnetic separator for simultaneous detection of four foodborne pathogenic bacteria. ASABE 58:891–906. doi:10.13031/trans.58.11089

    Google Scholar 

  • Yang M, Peng Z, Ning Y, Chen Y, Zhou Q, Deng L (2013) Highly specific and cost-efficient detection of Salmonella paratyphi A combining aptamers with single-walled carbon nanotubes. Sensors (Basel) 13:6865–6881. doi:10.3390/s130506865

    Article  Google Scholar 

  • Yuan J, Wu S, Duan N, Ma X, Yu X, Chen J, Ding J, Wang Z (2014) A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 127:163–168. doi:10.1016/j.talanta.2014.04.013

    Article  Google Scholar 

  • Zuo P, Li X, Dominguez DC, Ye BC (2013) A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 13:3921–3928. doi:10.1039/c3lc50654a

    Article  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Durban University of Technology and the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa is sincerely acknowledged. The sincere assistance from Mr. Julian T. Arran for valuable suggestions in editing this manuscript is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulshan Singh.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Manohar, M., Adegoke, A.A. et al. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update. J Nanopart Res 19, 4 (2017). https://doi.org/10.1007/s11051-016-3688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3688-3

Keywords

Navigation