Skip to main content
Log in

Systematic control of edge length, tip sharpness, thickness, and localized surface plasmon resonance of triangular Au nanoprisms

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Triangular gold (Au) nanoprisms of various sizes were synthesized in a controlled way using a modified three-step seed-mediated method with different volumes of starting seed solution and subsequent first step’s growth solution. The structures and optical properties of the triangular Au nanoprisms were investigated using transmission electron microscopy (TEM), atomic force microscopy, and UV–Vis–NIR spectrophotometry. The Au nanoprisms synthesized also varied in optical response frequency of localized surface plasmon resonance (LSPR) owing to electric dipole polarizations of the Au nanoprisms. This variation depended nonlinearly on the volume of the seed solution. From optical extinction spectra and careful TEM observations, the dipole LSPR peak frequency was found to be linearly proportional to the edge length of the Au nanoprisms. Consequently, it was experimentally shown that the LSPR optical response frequency of their colloidal solutions could be controlled in the near-infrared region (700–1200 nm), corresponding to an edge length of 40–180 nm of the Au nanoprisms. It was also demonstrated that the tip sharpness of triangular Au nanoprisms was improved by using fine Au seeds instead of coarse Au seeds, and the resulting Au nanoprisms were smaller and thinner. A formation mechanism of triangular Au nanoprisms shall also be discussed with a prospect of synthesizing very tiny Au nanoprisms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Ah CS, Yun YJ, Park HJ, Kim WJ, Ha DH, Yun WS (2005) Size-controlled synthesis of machinable single crystalline gold nanoplates. Chem Mater 17:5558–5561. doi:10.1021/cm051225h

    Article  Google Scholar 

  • Aherne D, Ledwith DM, Gara M, Kelly JM (2008) Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater 18:2005–2016. doi:10.1002/adfm.200800233

    Article  Google Scholar 

  • Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics, Springer series in optical sciences. Springer, Berlin

    Book  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217. doi:10.1039/B514191E

    Article  Google Scholar 

  • Fan X, Guo ZR, Hong JM, Zhang Y, Zhang JN, Gu N (2010) Size-controlled growth of colloidal nanoplates and their high-purity acquisition. Nanotechnology 21:105602/1-7. doi:10.1088/0957-4484/21/10/105602

    Google Scholar 

  • Goy-López S, Castro R, Taboada P, Mosquera V (2008) Block copolymer-mediated synthesis of size-tunable gold nanospheres and nanoplates. Langmuir 24:13186–13196. doi:10.1021/la802279j

    Article  Google Scholar 

  • Guo Z, Zhang Y, Mao Y, Huang L, Gu N (2006) Synthesis of microsized gold nanoplates by a self-seeding method in ethanol solution. Mater Lett 60:3522–3525. doi:10.1016/j.matlet.2006.03.043

    Article  Google Scholar 

  • Ha TH, Koo HJ, Chung BH (2007) Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ion. J Phys Chem 111:1123–1130. doi:10.1021/jp066454l

    Article  Google Scholar 

  • Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375. doi:10.1557/mrs2005.100

    Article  Google Scholar 

  • Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79:4215–4221. doi:10.1021/ac0702084

    Article  Google Scholar 

  • Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366. doi:10.1063/1.1629280

    Article  Google Scholar 

  • Hayakawa T, Usui Y, Bharathi S, Nogami M (2004) Second harmonic generation from coupled surface plasmon resonances in self-assembling gold nanoparticles monolayer coated with an aminosilane. Adv Mater 16:1408–1412. doi:10.1002/adma.200306463

    Article  Google Scholar 

  • Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77:338A–346A. doi:10.1021/ac053456d

    Article  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. doi:10.1021/jp057170o

    Article  Google Scholar 

  • Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903. doi:10.1126/science.1066541

    Article  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. doi:10.1021/jp026731y

    Article  Google Scholar 

  • Kirkland AI, Edwards PP, Jefferson DA, Duff DG (1990) The structure, characterization, and evolution of colloidal metals. Annu Rep Prog Chem Sect C: Phys Chem 87:247–304. doi:10.1039/PC9908700247 (Chapter 8)

    Article  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters, Springer series in materials science. Springer, Berlin

    Book  Google Scholar 

  • Lee KS, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109:20331–20338. doi:10.1021/jp054385p

    Article  Google Scholar 

  • Lee YH, Lee CK, Tan B, Tan JMR, Phang IY, Ling XY (2013) Using the Langmuir–Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayers films. Nanoscale 5:6404–6412. doi:10.1039/c3nr00981e

    Article  Google Scholar 

  • Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced Raman scattering. J Phys Chem 76:751–752. doi:10.1063/1.442690

    Article  Google Scholar 

  • Mahmoud MA, El-Sayed MA (2013) Efferent plasmon sensing behavior of silver and gold nanorods. J Phys Chem Lett 4:1541–1545. doi:10.1021/jz4005015

    Article  Google Scholar 

  • Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101/1-10. doi:10.1063/1.1951057

    Article  Google Scholar 

  • Métraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17:412–415. doi:10.1002/adma.200401086

    Article  Google Scholar 

  • Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313. doi:10.1021/ja043245a

    Article  Google Scholar 

  • Millstone JE, Wei W, Jones MR, Yoo H, Mirkin CA (2008) Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett 8:2526–2529. doi:10.1021/nl8016253

    Article  Google Scholar 

  • Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523. doi:10.1016/S0009-2614(99)01414-1

    Article  Google Scholar 

  • Mohammadi R, Unger A, Elmers HJ, Schonhense G, Shushtari MZ, Kreiter M (2011) Manipulating near field polarization beyond the diffraction limit. Appl Phys B 104:65–71. doi:10.1007/s00340-011-4475-6

    Article  Google Scholar 

  • Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanopart Res 3:257–261. doi:10.1023/A:1017567225071

    Article  Google Scholar 

  • Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106/1-3. doi:10.1063/1.1855423

    Article  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488. doi:10.1038/nmat1152

    Article  Google Scholar 

  • Shuford KL, Ratner MA, Schatz GC (2005) Multipolar excitation in triangular nanoprisms. J Chem Phys 123:1147131/1-9. doi:10.1063/1.2046633

    Article  Google Scholar 

  • Tsuji M, Miyamae N, Lim S, Kimura K, Zhang X, Hikino S, Nishio M (2006) Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method. Cryst Growth Des 6:1801–1807. doi:10.1021/cg060103e

    Article  Google Scholar 

  • Tsutsui Y, Hayakawa T, Kawamura G, Nogami M (2011) Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods. Nanotechnology 22:275203/1-7. doi:10.1088/0957-4484/22/27/275203

    Article  Google Scholar 

  • Wang Y, Schlucker S (2013) Rational design and synthesis of SERS label. Analyst 138:2224–2238. doi:10.1039/C3AN36866A

    Article  Google Scholar 

  • Xu S, Cao Y, Zhou J, Wang X, Wang X, Xu W (2011) Plasmonic enhancement of fluorescence on silver nanoparticle films. Nanotechnology 22:275725/1-7. doi:10.1088/0957-4484/22/27/275715

    Google Scholar 

  • Yamaguchi K, Inoue T, Fujii M, Ogawa T, Matsuzaki Y, Okamoto T, Haraguchi M (2007) Characteristics of light intensity enhancement of a silver nanoprism with rounded corners. J Microsc 229:545–550. doi:10.1111/j.1365-2818.2008.01941.x

    Article  Google Scholar 

  • Yang P, Portales H, Pileni MP (2009) Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method. J Chem Phys C 113:11597–11604. doi:10.1021/jp901248e

    Article  Google Scholar 

  • Young KL, Jones MR, Zhang J, Macfarlane RJ, Esquivel-Sirvent R, Nap RJ, Wu J, Schatz GC, Lee B, Mirkin CA (2012) Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proc Natl Acad Sci 109:2240–2245. doi:10.1073/pnas.1119301109

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the JSPS International Training Program (ITP), “Young Scientist-Training Program for World Ceramics Networks” and by a grant from Institute of Ceramics Research and Education (ICRE) in Nagoya Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomokatsu Hayakawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noda, Y., Hayakawa, T. Systematic control of edge length, tip sharpness, thickness, and localized surface plasmon resonance of triangular Au nanoprisms. J Nanopart Res 18, 314 (2016). https://doi.org/10.1007/s11051-016-3581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3581-0

Keywords

Navigation