Skip to main content
Log in

Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adiseshaiah PP, Hall JB, McNeil SE (2010) Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:99–112

    Article  Google Scholar 

  • Alai M, Lin WJ (2014) Novel lansoprazole-loaded nanoparticles for the treatment of gastric acid secretion-related ulcers. In vitro and in vivo pharmacokinetic pharmacodynamic evaluation. AAPS J 16:361–372

    Article  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  Google Scholar 

  • Beletsi A, Panagi Z, Avgoustakis K (2005) Biodistribution properties of nanoparticles based on mixtures of PLGA with PLGA–PEG diblock copolymers. Int J Pharm 298:233–241

    Article  Google Scholar 

  • Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S et al (2009) PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res 91A:263–276

    Article  Google Scholar 

  • Chittasupho C, Xie SX, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ (2009) ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci 37:141–150

    Article  Google Scholar 

  • Choi SK, Verma M, Silpe J, Moody RE, Tang K, Hanson JJ et al (2012) A photochemical approach for controlled drug release in targeted drug delivery. Bioorg Med Chem 20:1281–1290

    Article  Google Scholar 

  • Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450

    Article  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  Google Scholar 

  • Eccles SA (2011) The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol 55:685–696

    Article  Google Scholar 

  • Hattori Y, Yamasaku H, Maitani Y (2013) Anionic polymer-coated lipoplex for safe gene delivery into tumor by systemic injection. J Drug Target 21:639–647

    Article  Google Scholar 

  • Jones CH, Chen CK, Ravikrishnan A, Rane S, Pfeifer BA (2013) Overcoming nonviral gene delivery barriers: perspective and future. Mol Pharm 10:4082–4098

    Article  Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010

    Article  Google Scholar 

  • Li Z, Qiu L, Chen Q, Hao T, Qiao M, Zhao H et al (2015) pH-sensitive nanoparticles of poly(l-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater 11:137–150

    Article  Google Scholar 

  • Lin WJ, Kao LT (2014) Cytotoxic enhancement of hexapeptide-conjugated micelles in epidermal growth factor receptor high-expressed cancer cells. Exp Opin Drug Del 11:1–14

    Google Scholar 

  • Liu CW, Lin WJ (2012) Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin. Int J Nanomed 7:4749–4767

    Google Scholar 

  • Liu CW, Lin WJ (2013a) Using doxorubicin and siRNA loaded heptapeptide conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells. J Drug Target 21:776–786

    Article  Google Scholar 

  • Liu CW, Lin WJ (2013b) Systemic co-delivery of doxorubicin and siRNA using nanoparticles conjugated with EGFR specific targeting peptide to enhance chemotherapy in ovarian tumor bearing mice. J Nano Res 15:1956–1969

    Article  Google Scholar 

  • Master A, Malamas A, Solanki R, Clausen DM, Eiseman JL, Sen Gupta A (2013) A cell-targeted photodynamic nanomedicine strategy for head and neck cancers. Mol Pharm 10:1988–1997

    Article  Google Scholar 

  • Mattson G, Conklin E, Desai S, Nielander G, Savage MD, Morgensen S (1993) A practical approach to crosslinking. Mol Biol Rep 17:167–183

    Article  Google Scholar 

  • Mickler FM, Mockl L, Ruthardt N, Ogris M, Wagner E, Brauchle C (2012) Tuning nanoparticle uptake: live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand. Nano Lett 12:3417–3423

    Article  Google Scholar 

  • Milane L, Duan Z, Amij M (2011) Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm 8:185–203

    Article  Google Scholar 

  • Milella M, Nuzzo C, Bria E, Sperduti I, Buttitta F, Antoniani B et al (2012) EGFR molecular profiling in advanced NSCLC: a prospective phase II study in molecularly/clinically selected patients pretreated with chemotherapy. J Thorac Oncol 7:672–680

    Article  Google Scholar 

  • Oliveira MF, Guimaraes PP, Gomes AD, Suarez D, Sinisterra RD (2012) Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market. J Chem Biol 6:7–23

    Article  Google Scholar 

  • Pamujula S, Hazari S, Bolden G, Graves RA, Chinta DD, Dash S et al (2012) Cellular delivery of PEGylated PLGA nanoparticles. J Pharm Pharmacol 64:61–67

    Article  Google Scholar 

  • Ranganathan R, Madanmohan S, Kesavan A, Baskar G, Krishnamoorthy YR, Santosham R et al (2012) Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomedicine 7:1043–1060

    Google Scholar 

  • Rao NM, Gopal V (2006) Cell biological and biophysical aspects of lipid-mediated gene delivery. Biosci Rep 26:301–324

    Article  Google Scholar 

  • Reinehr R, Haussinger D (2012) CD95 death receptor and epidermal growth factor receptor (EGFR) in liver cell apoptosis and regeneration. Arch Biochem Biophys 518:2–7

    Article  Google Scholar 

  • Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Dev Ther 7:585–599

    Google Scholar 

  • She ZG, Liu X, Kotamraju VR, Ruoslahti E (2014) Clot-targeted micellar formulation improves anticoagulation efficacy of bivalirudin. ACS Nano 8:10139–10149

    Article  Google Scholar 

  • Shroff K, Kokkoli E (2012) PEGylated liposomal doxorubicin targeted to alpha5beta1-expressing MDA-MB-231 breast cancer cells. Langmuir 28:4729–4736

    Article  Google Scholar 

  • Stella GM, Luisetti M, Inghilleri S, Cemmi F, Scabini R, Zorzetto M et al (2012) Targeting EGFR in non-small-cell lung cancer: lessons, experiences, strategies. Respir Med 106:173–183

    Article  Google Scholar 

  • Tada N, Horibe T, Haramoto M, Ohara K, Kohno M, Kawakami K (2011) A single replacement of histidine to arginine in EGFR-lytic hybrid peptide demonstrates the improved anticancer activity. Biochem Biophys Res Commun 407:383–388

    Article  Google Scholar 

  • Tahara K, Sakai T, Yamamoto H, Takeuchi H, Hirashima N, Kawashima Y (2011) Improvements in transfection efficiency with chitosan modified poly(dl-lactide-co-glycolide) nanospheres prepared by the emulsion solvent diffusion method for gene delivery. Chem Pharm Bull (Tokyo) 59:298–301

    Article  Google Scholar 

  • Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    Article  Google Scholar 

  • Wang W, Li W, Ma N, Steinhoff G (2013) Non-viral gene delivery methods. Curr Pharm Biotechnol 14:46–60

    Google Scholar 

  • Xu J, Gattacceca F, Amiji M (2013) Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice. Mol Pharm 10:2031–2044

    Article  Google Scholar 

  • Yamamoto H, Tahara K, Kawashima Y (2012) Nanomedical system for nucleic acid drugs created with the biodegradable nanoparticle platform. J Microencapsul 29:54–62

    Article  Google Scholar 

  • Zajchowski DA, Karlan BY, Shawver LK (2012) Treatment-related protein biomarker expression differs between primary and recurrent ovarian carcinomas. Mol Cancer Ther 11:492–502

    Article  Google Scholar 

  • Zeng P, Xu Y, Zeng C, Ren H, Peng M (2011) Chitosan-modified poly(d,l-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing. Int J Pharm 415:259–266

    Article  Google Scholar 

  • Zhang XX, Eden HS, Chen X (2012) Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release 159:2–13

    Article  Google Scholar 

  • Zhou W, Zhou Y, Wu J, Liu Z, Zhao H, Liu J, Ding J (2014) Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J Drug Target 22:57–66

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Science and Technology in Taiwan (NSC 102-2320-B-002-007-MY3). The authors thank Dr. Fu Hsiung Chang for Zetasizer, Dr. Jin Long Chen for pEGFP-N1, Dr. Che-Ming Teng and Dr. I-Fen Chen for cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jen Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W.J., Chien, W.H. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery. J Nanopart Res 17, 349 (2015). https://doi.org/10.1007/s11051-015-3132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3132-0

Keywords

Navigation