Skip to main content
Log in

Magnetic nanoparticles in medical nanorobotics

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334:518–519

    Article  Google Scholar 

  • Belharet K, Folio D, Ferreira A (2013) Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans Biomed Eng 60(4):994–1001

    Article  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    Article  Google Scholar 

  • Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48:52–61

    Article  Google Scholar 

  • Branquinho LC et al (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci. Rep. 3:2887

    Article  Google Scholar 

  • Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862–865

    Article  Google Scholar 

  • Duan H, Kuang M, Wang X, Wang YA, Mao H, Nie S (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112:8127–8131

    Article  Google Scholar 

  • Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898

    Article  Google Scholar 

  • Guarda P et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  • Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20(38):385214

    Google Scholar 

  • Jun YW et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnostic via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733

    Article  Google Scholar 

  • Lacroix L-M et al (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses. J Appl Phys 105:023911

    Article  Google Scholar 

  • Lee JH et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech. 6:418

    Article  Google Scholar 

  • Lee N et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vovo MRI in tumors. Nano Lett 12:3127–3131

    Article  Google Scholar 

  • Martel S (2013a) Bacterial microsystems and microrobots. Biomed Microdevices 14(6):1033–1045

    Article  Google Scholar 

  • Martel S (2013b) Navigation control of micro-agents in the vascular network: challenges and strategies for endovascular magnetic navigation control of microscale drug delivery carriers. IEEE Cont Syst 33(6):119–134

    Article  Google Scholar 

  • Martel S (2014) Magnetic therapeutic delivery using navigable agents. Ther Deliv 5:189–204

    Article  Google Scholar 

  • Martel S, Mathieu J-B, Felfoul O, Chanu A, Aboussouan É, Tamaz S, Pouponneau P, Beaudoin G, Soulez G, Yahia L’H, Mankiewicz M (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114105

    Article  Google Scholar 

  • Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009a) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J Robot Res (IJRR) 28(4):571–582

    Article  Google Scholar 

  • Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009b) MRI-based nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J Robot Res (IJRR) 28(9):1169–1182

    Article  Google Scholar 

  • Martinex-Boubeta C et al (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci. Rep. 3:1652

    Google Scholar 

  • Martinez-Boubeta C et al (2010) Self-assembled Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomed. Nanotech. Biol. Med. 6:362–370

    Article  Google Scholar 

  • Mathieu J-B, Martel S (2009) Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system. J. Appl Phys. 106:1–044904

    Article  Google Scholar 

  • Mathieu J-B, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53(2):292–299

    Article  Google Scholar 

  • Meffre A et al (2012) A simple chemical route toward monodisperse iron carbide nanoparticles displaying tunable magnetic and unprecedented hyperthermia properties. Nano Lett 12:4722–4728

    Article  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175

    Article  Google Scholar 

  • Ngo A-T, Pileni M-P (2000) Nanoparticles of cobalt ferrite: influence of the applied field on the organization of the nanocrystals on a substrate and on their magnetic properties. Adv Mater 12(4):276–279

    Article  Google Scholar 

  • Pouponneau P, Leroux J-C, Soulez G, Gaboury L, Martel S (2011) Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32(13):3481–3486

    Article  Google Scholar 

  • Pouponneau P, Segura V, Savadogo O, Lweroux J-C, Martel S (2012) Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation. J Nanopart Res 14:1307–1320

    Article  Google Scholar 

  • Pouponneau P, Bringout G, Martel S (2014) Therapeutic magnetic microcarriers guided by magnetic resonance navigation for enhanced liver chemoembolization: a design review”. Ann Biomed Eng 42(5):929–939

    Article  Google Scholar 

  • Reiss G, Hutten A (2005) Magnetic nanoparticles–Applications beyond data storage. Nat Mater 4:725–726

    Article  Google Scholar 

  • Serantes et al (2010) Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles. J Appl Phys 108:073918

    Article  Google Scholar 

  • Serantes et al (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934

    Article  Google Scholar 

  • Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. PNAS 101(30):10901–10906

    Article  Google Scholar 

  • Tabatabaei SN, Lapointe J, Martel S (2011) Shrinkable hydrogel-based magnetic microrobots for interventions in the vascular network. Adv. Robot 25:1049–1067

    Article  Google Scholar 

  • Tabatabaei SN, Duchemin S, Girouard H, Martel S (2012) Towards MR-navigable nanorobotic carriers for drug delivery into the brain, IEEE Conf. Robot Autom 14:727–732

    Google Scholar 

  • Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821

    Article  Google Scholar 

  • Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE, Zhang H, Bergeles C, Nelson BJ (2009a) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667

    Article  Google Scholar 

  • Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009b) Size-dependent endocytosis of nanoparticles. Adv. Matter. 21:419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Martel.

Additional information

Guest Editors: Leonardo Ricotti, Arianna Menciassi

This article is part of the topical collection on Nanotechnology in Biorobotic Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martel, S. Magnetic nanoparticles in medical nanorobotics. J Nanopart Res 17, 75 (2015). https://doi.org/10.1007/s11051-014-2734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2734-2

Keywords

Navigation