Skip to main content
Log in

β-(p-Carboxyaminophenyl)porphyrin derivatives: new dyes for TiO2 dye-sensitized solar cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

New β-(p-carboxyaminophenyl)porphyrin derivatives were efficiently synthesized via palladium-catalysed amination of methyl 4-iodobenzoate with (2-amino-5-10,15,20-tetraphenylporphyrinato)nickel(II), followed by a demetallation/metallation sequence and basic hydrolysis. Optical and electrochemical studies revealed their potentiality for being considered as dyes in DSSCs devices, in which a power conversion efficiency of about 30 % of the more conventional Ru(II)-sensitizer N719 was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barea EM, Gónzalez-Pedro V, Ripollés-Sanchis T, Wu HP, Li LL, Yeh E, Diau EWG, Bisquert J (2011) Porphyrin dyes with high injection and low recombination for highly efficient mesoscopic dye-sensitized solar cells. J Phys Chem C 115:10898–10902. doi:10.1021/jp2018378

    Article  Google Scholar 

  • Benniston AC, Harriman A (2008) Artificial photosynthesis. Mater Today 11:26–34. doi:10.1016/S1369-7021(08)70250-5

    Article  Google Scholar 

  • Bessho T, Zakeeruddin SM, Yeh CY, Diau EWG, Grätzel M (2010) Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew Chem Int Ed 49:6646–6649. doi:10.1002/anie.201002118

    Article  Google Scholar 

  • Buchler JW (1975) Static coordination chemistry of metalloporphyrins. In: Smith KM (ed) Porphyrins and metalloporphyrins, chap 5. Elsevier, Amsterdam, pp 157–231

  • Campbell WM, Jolley KW, Wagner P, Wagner K, Walsh PJ, Gordon KC, Schmidt-Mende L, Nazeeruddin MK, Wang Q, Grätzel M, Officer DL (2007) Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J Phys Chem C 111:11760–11762. doi:10.1021/jp0750598

    Article  Google Scholar 

  • Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676. doi:10.1063/1.1721711

    Article  Google Scholar 

  • Chen CY, Wang M, Li JY, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet JD, Tsai JH, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103–3109. doi:10.1021/nn900756s

    Article  Google Scholar 

  • Chen CY, Pootrakulchote N, Chen MY, Moehl T, Tsa HH, Zakeeruddin SM, Wu CG, Grätzel M (2012) A new heteroleptic ruthenium sensitizer for transparent dye-sensitized solar cells. Adv Energy Mater 2:1503–1509. doi:10.1002/aenm.201200285

    Article  Google Scholar 

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 484:294–303. doi:10.1038/nature11475

    Article  Google Scholar 

  • Clifford JN, Martínez-Ferrero E, Viterisi A, Palomares E (2011) Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem Soc Rev 40:1635–1646. doi:10.1039/B920664G

    Article  Google Scholar 

  • D’Souza F, Ito O (2009) Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications. Chem Commun 33:4913–4928. doi:10.1039/B905753F

    Article  Google Scholar 

  • Fields KB, Ruppel JV, Snyder NL, Zhang XP (2010) Porphyrin functionalization via palladium-catalyzed carbon–heteroatom cross-coupling reactions. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 3. World Scientific, Singapore, pp 367–428

    Google Scholar 

  • Fukui N, Cha WY, Lee S, Tokuji S, Kim D, Yorimitsu H, Osuka A (2013) Oxidative fusion reactions of meso-(diarylamino)porphyrins. Angew Chem Int Ed 52:9728–9732. doi:10.1002/anie.201304794

    Article  Google Scholar 

  • Giraudeau A, Callot HJ, Jordan J, Ezhar I, Gross M (1979) Substituent effects in the electroreduction of porphyrins and metalloporphyrins. J Am Chem Soc 101:3857–3862. doi:10.1021/ja00508a024

    Article  Google Scholar 

  • Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153. doi:10.1016/S1389-5567(03)00026-1

    Article  Google Scholar 

  • Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514. doi:10.1038/nphoton.2014.134

    Article  Google Scholar 

  • Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663. doi:10.1021/cr900356p

    Article  Google Scholar 

  • Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photonics 8:489–494. doi:10.1038/nphoton.2014.82

    Article  Google Scholar 

  • Haumesser J, Pereira AMVM, Gisselbrecht JP, Merahi K, Choua S, Weiss J, Cavaleiro JAS, Ruppert R (2013) Inexpensive and efficient Ullmann methodology to prepare donor-substituted porphyrins. Org Lett 15:6282–6285. doi:10.1021/ol403132f

    Article  Google Scholar 

  • Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim HJ, Sarkar A, Nazeeruddin MK, Grätzel M, Seok SI (2013) Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7:486–491. doi:10.1038/nphoton.2013.80

    Article  Google Scholar 

  • Hombrecher HK, Gherdan VM, Ohm S, Cavaleiro JAS, Neves MGPMS, Condesso MF (1993) Synthesis and electrochemical investigation of β-alkyloxy substituted meso-tetraphenylporphyrins. Tetrahedron 49:8569–8578. doi:10.1016/S0040-4020(01)96263-5

    Article  Google Scholar 

  • Hsieh CP, Lu HP, Chiu CL, Lee CW, Chuang SH, Mai CL, Yen WN, Hsu SJ, Diau EWG, Yeh CY (2010) Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. J Mater Chem 20:1127–1134. doi:10.1039/b919645e

    Article  Google Scholar 

  • Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5 % Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093. doi:10.1039/c1nr10867k

    Article  Google Scholar 

  • Imahori H, Matsubara Y, Iijima H, Umeyama T, Ito S, Niemi SM, Tkachenko NV, Lemmetyinen H (2010) Effects of meso-diarylamino group of porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties. J Phys Chem C 114:10656–10665. doi:10.1021/jp102486b

    Article  Google Scholar 

  • Ishida M, Park SW, Hwang D, Koo YB, Sessler JL, Kim DY, Kim D (2011) Donor-substituted β-functionalized porphyrin dyes on hierarchically structured mesoporous TiO2 spheres. Highly efficient dye-sensitized solar cells. J Phys Chem C 115:19343–19354. doi:10.1021/jp202307b

    Article  Google Scholar 

  • Ishida M, Hwang D, Koo YB, Sung J, Kim DY, Sessler JL, Kim D (2013) β-(Ethynylbenzoic acid)-substituted push–pull porphyrins: DSSC dyes prepared by a direct palladium-catalyzed alkynylation reaction. Chem Commun 49:9164–9166. doi:10.1039/C3CC44847A

    Article  Google Scholar 

  • Ito A, Tanaka K (2010) Macrocyclic oligoarylamine-based spin system. Pure Appl Chem 82:979–989. doi:10.1351/pac-con-09-10-16

    Article  Google Scholar 

  • Jones BA, Facchetti A, Wasielewski MR, Marks TJ (2007) Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport. J Am Chem Soc 129:15259–15278. doi:10.1021/ja075242e

    Article  Google Scholar 

  • Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2:591. doi:10.1038/srep00591

    Google Scholar 

  • Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. doi:10.1021/ja809598r

    Article  Google Scholar 

  • Lee CW, Lu HP, Lan CM, Huang YL, Liang YR, Yen WN, Liu YC, Lin YS, Diau EWG, Yeh CY (2009) Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. Chem Eur J 15:1403–1412. doi:10.1002/chem.200801572

    Article  Google Scholar 

  • Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. doi:10.1126/science.1228604

    Article  Google Scholar 

  • Lenzmann F, Krueger J, Burnside S, Brooks K, Grätzel M, Gal D, Rühle S, Cahen D (2011) Hydration properties of α-, β-, and γ-cyclodextrins from molecular dynamics simulations. J Phys Chem B 105:6347–6357. doi:10.1021/jp2013946

    Article  Google Scholar 

  • Li LL, Diau EWG (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304. doi:10.1039/C2CS35257E

    Article  Google Scholar 

  • Liu D, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 8:133–138. doi:10.1038/nphoton.2013.342

    Article  Google Scholar 

  • Liu C, Shen DM, Chen QY (2007) Practical and efficient synthesis of various meso-functionalized porphyrins via simple ligand-free nickel-catalyzed C–O, C–N, and C–C cross-coupling reactions. J Org Chem 72:2732–2736. doi:10.1021/jo0618728

    Article  Google Scholar 

  • Lo PC, Leng X, Ng DPK (2007) Hetero-arrays of porphyrins and phthalocyanines. Coord Chem Rev 251:2334–2353. doi:10.1016/j.ccr.2007.03.007 and references therein

    Article  Google Scholar 

  • Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247. doi:10.1038/nchem.1861

    Article  Google Scholar 

  • Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H (2014) A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345:295–298. doi:10.1126/science.1254763

    Article  Google Scholar 

  • Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499. doi:10.1002/anie.200804709

    Article  Google Scholar 

  • Moura NMM, Faustino MAF, Neves MGPMS, Tomé AC, Rakib EM, Hannioui A, Mojahidi S, Hackbarth S, Röder B, Paz FAA, Silva AMS, Cavaleiro JAS (2012) Novel pyrazoline and pyrazole porphyrin derivatives: synthesis and photophysical properties. Tetrahedron 68:8181–8183. doi:10.1016/j.tet.2012.07.0721

    Article  Google Scholar 

  • Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390. doi:10.1021/ja00067a063

    Article  Google Scholar 

  • Nazeeruddin MK, Klein C, Liska P, Grätzel M (2005) Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coord Chem Rev 249:1460–1467. doi:10.1016/j.ccr.2005.03.025

    Article  Google Scholar 

  • Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad AA, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herza LM, Snaith HJ (2014) Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci 7:3061–3068. doi:10.1039/c4ee01076k

    Article  Google Scholar 

  • O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi:10.1038/353737a0

    Article  Google Scholar 

  • Pereira AMVM, Alonso CMA, Neves MGPMS, Tomé AC, Silva AMS, Paz FAA, Cavaleiro JAS (2008) A new synthetic approach to N-arylquinolino[2,3,4-at]porphyrins from β-arylaminoporphyrins. J Org Chem 73:7353–7356. doi:10.1021/jo800975c

    Article  Google Scholar 

  • Pereira AMVM, Soares ARM, Hausmann A, Neves MGPMS, Tomé AC, Silva AMS, Cavaleiro JAS, Guldi DM, Torres T (2011a) Distorted fused porphyrin–phthalocyanine conjugates: synthesis and photophysics of supramolecular assembled systems with a pyridylfullerene. Phys Chem Chem Phys 13:11858–11863. doi:10.1039/C1CP00016K

    Article  Google Scholar 

  • Pereira AMVM, Neves MGPMS, Cavaleiro JAS, Jeandon C, Gisselbrecht JP, Choua S, Ruppert R (2011b) Diporphyrinylamines: synthesis and electrochemistry. Org Lett 13:4742–4745. doi:10.1021/ol2020658

    Article  Google Scholar 

  • Pereira AMVM, Hausmann A, Tomé JPC, Trukhina O, Urbani M, Neves MGPMS, Cavaleiro JAS, Guldi DM, Torres T (2012) Porphyrin–phthalocyanine/pyridylfullerene supramolecular assemblies. Chem Eur J 18:3210–3219. doi:10.1002/chem.201103776

    Article  Google Scholar 

  • Ripollés-Sanchis T, Guo BC, Wu HP, Pan TY, Lee HW, Raga SR, Fabregat-Santiago F, Bisquert J, Yeh CY, Diau EWG (2012) Design and characterization of alkoxy-wrapped push–pull porphyrins for dye-sensitized solar cells. Chem Commun 48:4368–4370. doi:10.1039/c2cc31111a

    Article  Google Scholar 

  • Rocha Gonsalves AMd’A, Varejão JMTB, Pereira MM (1991) Some new aspects related to the synthesis of meso-substituted porphyrins. J Heterocycl Chem 28:635–640. doi:10.1002/jhet.5570280317

    Article  Google Scholar 

  • Smith KM, Milgrom LR, Kenner GW (1981) Syntheses of monofunctional porphyrinyl peptides containing glycine and leucine. J Chem Soc, Perkin Trans 1 2065–2069. doi:10.1039/P19810002065

  • Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630. doi:10.1021/jz4020162

    Article  Google Scholar 

  • Wang CL, Lan CM, Hong SH, Wang YF, Pan TY, Chang CW, Kuo HH, Kuo MY, Diau EWG, Lin CY (2012) Enveloping porphyrins for efficient dye-sensitized solar cells. Energy Environ Sci 5:6933–6940. doi:10.1039/c2ee03308a

    Article  Google Scholar 

  • Wang Y, Li X, Liu B, Wu W, Zhu W, Xie Y (2013) Porphyrins bearing long alkoxyl chains and carbazole for dye-sensitized solar cells: tuning cell performance through an ethynylene bridge. RSC Adv 3:14780–14790. doi:10.1039/C3RA40788H

    Article  Google Scholar 

  • Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92:435–461. doi:10.1021/cr00011a005

    Article  Google Scholar 

  • Wu SL, Lu HP, Yu HT, Chuang SH, Chiu CL, Lee CW, Diau EWG, Yeh CY (2010) Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells. Energy Environ Sci 3:949–955. doi:10.1039/c003872p

    Article  Google Scholar 

  • Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634. doi:10.1126/science.1209688

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Fundação para a Ciência e a Tecnologia (FCT), European Union, QREN, FEDER and COMPETE for funding the QOPNA research unit (Projects PEst-C/QUI/UI0062/2013 and FCOMP-01-0124-FEDER-037296), the Portuguese National NMR Network, EXPL/QEQ-QOR/0906/2013 and PEst-C/CTM/LA0025/2011. Ana M.V.M Pereira, Nuno M.M. Moura, António F. da Cunha and Mário J.C. Lima are grateful to FCT for their Grants (SFRH/BPD/64693/2009, SFRH/BPD/84216/2012, PTDC/CTM-CER/111590/2009 and PTDC/QUI–QUI/101497/2008, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. V. M. Pereira.

Additional information

Guest Editors: Carlos Lodeiro Espiño, José Luis Capelo Martinez

This article is part of the topical collection on Composite Nanoparticles

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A.M.V.M., Cerqueira, A.F.R., Moura, N.M.M. et al. β-(p-Carboxyaminophenyl)porphyrin derivatives: new dyes for TiO2 dye-sensitized solar cells. J Nanopart Res 16, 2647 (2014). https://doi.org/10.1007/s11051-014-2647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2647-0

Keywords

Navigation