Skip to main content
Log in

Synthesis of pure iron nanoparticles at liquid–liquid interface using pulsed plasma

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Pure α-Fe nanoparticles with ≤10 nm size were synthesized using a simple method—pulsed plasma in liquid. This is the first time that pure metallic nanoparticles were prepared by arc discharge method using water–toluene interface as a medium. Several experiments made evident that toluene–water ratio in emulsion influences the purity and size of Fe nanoparticles. The purity of the nanoparticles gradually increased from 48 to 98 %, while particle size decreased from 21 to 9.5 nm with smaller toluene volume fraction (from 40 to 5 %) in the microemulsions. Finally, toluene:water with 95:5 (%) ratio was found to be the most appropriate medium for pure Fe nanoparticle formation. Lattice parameters of the obtained Fe samples calculated from XRD found to be larger (a = 0.2927 nm) than those previously reported Fe (a (BCC-Fe) = 0.2866 nm). HRTEM showed spherical-shaped Fe nanoparticles with partial aggregation. Vibrating sample magnetometer indicated superparamagnetic properties of particles with high-saturation magnetization (M s = 125 emu g−1) at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdullaeva Z, Omurzak E, Iwamoto C, Ganapathy HS, Sulaimankulova S, Chen L, Mashimo T (2012) Onion-like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in liquid. Carbon 50:1776–1785

    Article  Google Scholar 

  • Abdullaeva Z, Omurzak E, Iwamoto C, Ihara H, Ganapathy H, Sulaimankulova S, Koinuma M, Mashimo T (2013) Pulsed plasma synthesis of iron and nickel nanoparticles coated by carbon for medical applications. Jpn J Appl Phys 52:01AJ01

    Article  Google Scholar 

  • Alpbaz M, Bilgesu A, Tutkun O (1988) The measurement of interfacial tension by drop-weight method. Commun Fac Sci Univ Ank Serie B 34:103–112

    Google Scholar 

  • Bandyopadhyaya R, Rong W, Friedlander SK (2004) Dynamics of chain aggregates of carbon nanoparticles in isolation and in polymer films: implications for nanocomposite materials. Chem Mater 16:3147–3154

    Article  Google Scholar 

  • Barmann P, Kroll BS, Sunesson A (1996) Spectroscopic measurements of streamer filaments in electric breakdown in a dielectric liquid. J Phys D Appl Phys 29:1188–1196

    Article  Google Scholar 

  • Cao J, Elliott D, Zhang W (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506

    Article  Google Scholar 

  • Celebi O, Uzum C, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767

    Article  Google Scholar 

  • Chen L, Fleming P, Morris V, Holmes JD, Morris MA (2010) Size—related lattice parameter changes and surface defects in ceria nanocrystals. J Phys Chem C 114:12909–12919

    Article  Google Scholar 

  • Chen L, Mashimo T, Omurzak E, Okudera H, Iwamoto C, Yoshiasa A (2011) Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid. J Phys Chem C 115:9370–9375

    Article  Google Scholar 

  • Chen L, Mashimo T, Iwamoto C, Okudera H, Omurzak E, Ganapathy H, Ihara H, Abdullaeva Z, Takebe S, Yoshiasa A (2012) Synthesis of novel CoCx@C nanoparticles. Nanotechnology 24:045602

    Article  Google Scholar 

  • Choi HC, Jung YM, Kim SB (2005) Size effect in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38

    Article  Google Scholar 

  • Cullity BD (1972) Introduction to magnetic materials. Addison-Wiley, New York, pp 171–190

    Google Scholar 

  • Farrell D, Majetich S, Wilcoxon J (2003) Preparation and characterization of monodisperse Fe nanoparticles. J Phys Chem B 107(40):11022–11030

    Article  Google Scholar 

  • Freeman MW, Arrott A, Watson JHL (1960) Magnetism in medicine. J Appl Phys 31:404–405

    Article  Google Scholar 

  • Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Griffiths CH, Ohoro MP, Smith TW (1979) Structure, magnetic characterization and oxidation of colloidal iron dispersions. J Appl Phys 50:7108

    Article  Google Scholar 

  • Guo L, Huang Q, Li XY, Yang S (2001) Iron nanoparticles: synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys 3:1661–1665

    Article  Google Scholar 

  • He YQ, Sahoo Y, Wang SM (2006) Laser driven synthesis and magnetic properties of iron nanoparticle. J Nanopart Res 8(3–4):335–342

    Article  Google Scholar 

  • Huang KC, Ehrman SH (2007) Synthesis of Iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir 23:1419–1426

    Article  Google Scholar 

  • Huber DL (2005) Synthesis, properties and applications of Iron nanoparticles. Small 1(5):482–501

    Article  Google Scholar 

  • Johnson TL, Scherer MM, Tratnyek PG (1996) Kinetics of halogenated organic compound degradation by Iron metal. Environ Sci Technol 30:2634–2640

    Article  Google Scholar 

  • Karlsson MNA, Deppert K, Wacaser BA, Karlsson LS, Malm JO (2005) Size-controlled nanoparticles by thermal cracking of Iron pentacarbonyl. Appl Phys A 80:1579–1583

    Article  Google Scholar 

  • Khezri SH, Yazdani A, Khordad R (2012) Pure iron nanoparticles prepared by electric arc discharge method in ethylene glycol. Eur Phys J Appl Phys 59(03):30401

    Article  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372

    Article  Google Scholar 

  • Li T, Li Sh, Wang S, An Y, Jin Z (2009) Preparation of Nanoiron by water-in-Oil (W/O) microemulsion for reduction of nitrate in groundwater. J Water Resour Protect 1:16–21

    Article  Google Scholar 

  • Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GY (2005) TCE dechlorination rates, pathways, and efficiency of Nanoscale Iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemistry. Adv Drug Deliv Rev 63:24–46

    Article  Google Scholar 

  • Margeat O, Dumestre F, Amiens C, Chaudret B, Lecante P, Respaud M (2005) Synthesis of Iron nanoparticles: size effects, shape control and organisation. Prog Solid State Chem 33:71–79

    Article  Google Scholar 

  • Miguel-Sancho N, Bomati-Miguel O, Colom G, Salvador JP, Macro MP, Santamaria J (2011) Development of stable, water-dispersible and biofunctionalizable superparamagnetic iron oxide nanoparticles. Chem Mater 23:2795–2802

    Article  Google Scholar 

  • Neuberger T, Schorf B, Hofmann H, Hofmann M, Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  Google Scholar 

  • Omurzak E, Jasnakunov J, Mairykova N, Abdikerimova A, Maatkasimova A, Sulaimankulova S, Matsuda M, Nishida M, Ihara H, Mashimo T (2007) Synthesis method of nanomaterials by pulsed plasma in liquid. J Nanosc Nanotechnol 7:3157–3159

    Article  Google Scholar 

  • Omurzak E, Mashimo T, Sulaimankulova S, Takebe S, Chen L, Abdullaeva Z, Iwamoto C, Oishi Y, Ihara H, Okudera H, Yoshiasa A (2011) Wurtzite-type ZnS nanoparticles by pulsed electric discharge. Nanotechnology 22:7

    Article  Google Scholar 

  • Osborne EA, Atkins TM, Gilbert DA, Kauzlarich SM, Liu K, Louie AY (2012) Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology 23:215602

    Article  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 699(56):978–982

    Article  Google Scholar 

  • Poudyal N, Rong Ch, Liu JP (2011) Morphological and magnetic characterization of Fe, Co and FeCo nanoplates and nanoparticles prepared by surfactants-assisted ball milling. J Appl Phys 109:07B526

    Article  Google Scholar 

  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’hara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Enviorn Sci Technol 39:1309–1318

    Article  Google Scholar 

  • Ralchenko Y, Kramida A E, Reader J, NIST ASD Team (2011) NIST Atomic Spectra Database (ver. 4.1.0). National Institute of Standars and Technology [Online]: http://physics.nist.gov/asd. Accessed 13 June 2012

  • Rao CNR, Kalyanikutty KP (2008) The liquid–liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc Chem Res 41:489–499

    Article  Google Scholar 

  • Rao CNR, Kulkarni GU, Agrawal VV, Gautam UK, Chosh M, Tumkurkar U (2005) Use of the liquid–liquid interface for generating ultrathin nanocrsytalline films of metals, chalcogenides, and oxide. J Coll Interface Sci 289:305–318

    Article  Google Scholar 

  • Roca AG, Costo R, Rebolledo AF, Veintemillas-Verdaguer S, Tartaj P, Gonzales-Carreno T, Morales MP, Serna CJ (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:224002

    Article  Google Scholar 

  • Roldughin VI (2004) Self-assembly of nanoparticles at interfaces. Successes Chem 73(2):123–156 (in Russian)

    Google Scholar 

  • Scott TB, Dickinson M, Crane RA, Riba O, Hughes GM, Allen GC (2010) The effect of vacuum annealing on the structure and surface chemistry of Iron nanoparticles. J Nanopart Res 12:1765–1775

    Article  Google Scholar 

  • Sorensen CM (2001) In: Klabunde K (ed) Nanoscale materials in chemistry. Wile, New York, pp 169–222

  • Sulaimankulova S, Asanov U (2002) Energy-saturated media in the spark discharge plasma, Bishkek, 11–14 (in Russian)

  • Teja AS, Koh PY (2009) Synthesis, properties and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  Google Scholar 

  • Ungar T, Tichy G, Gubicza J, Hellming RJ (2005) Correlation between subgrains and coherently scattering domains. Powder Diffr 20(4):366–375

    Article  Google Scholar 

  • Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Phram Res 62:90–99

    Article  Google Scholar 

  • Wang Ch, Xu L, Wang Q (2003) Review of directly producing light olefins via CO hydrogenation. J Nat Gas Chem 12:10–16

    Google Scholar 

  • Watarai H (2001) Catalytic effect of the liquid–liquid interface in solvent extraction kinetics. In: Volkov AG (ed) Liquid interface in chemical, biological and pharmaceutical applications. Marcel Dekker, New York, pp 355–372. ISBN 0-203-90875-9

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge supports of this work by the Global COE Program on Pulsed Power Science of Kumamoto University and Monbukagakusho (MEXT) Scholarship Program of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Mashimo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelgenbaeva, Z., Omurzak, E., Takebe, S. et al. Synthesis of pure iron nanoparticles at liquid–liquid interface using pulsed plasma. J Nanopart Res 16, 2603 (2014). https://doi.org/10.1007/s11051-014-2603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2603-z

Keywords

Navigation