Skip to main content
Log in

Physicochemical characterization of fullerenol and fullerenol synthesis by-products prepared in alkaline media

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This investigation examined the physicochemical characteristics of a fullerene derivative, fullerenol [C60H z O x (OH) y ] (also known as “polyhydroxyl fullerene”) prepared in alkaline media, and its synthesis by-products to enable the assessment of mechanisms and factors influencing biological response. Physicochemical analyses included characterization by dynamic light scattering (DLS) and transmission electron scattering (TEM), surface charge assessment through electrophoretic analysis of mobility, and chemical composition analysis using ultraviolet/visible light, Fourier-transform infrared (FTIR), and X-ray photoelectron spectroscopy. Fullerenol was shown to exist in a molecular state at concentrations below 20 mg/L with agglomeration occur as gas concentration increased; sonication of fullerenol samples at multiple concentrations increased agglomeration. Fullerenol surface group composition varied between three independent synthesis events with the number of total derivatized carbon atoms ranging from 21 to 30 and the number of mono-oxygenated groups ranging from 5 to 20. Surface group configuration was influenced by the acidity of the solution in which it was synthesized, as determined through FTIR. By-products from fullerenol synthesis contained 17 to 30 surface groups and synthesis reactants tetrabutylammonium hydroxide (TBAH) and sodium hydroxide (NaOH) were found to be present in all by-products. By-products generated from methanol rinses were shown to contain 21 mono-oxygenated groups with no di-oxygenated moieties, the only sample encountered during investigations of fullerene-based materials containing no di-oxygenated surface groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves GC, Ladeira LO, Righi A, Krambrock K, Calado HD, Gil RP, Pinheiro MVB (2006) Synthesis of C60(OH)18-20 in aqueous alkaline solution under O2-atmosphere. J Braz Chem Soc 17(6):1186–1190

    Article  Google Scholar 

  • Aoshima H, Kokubo K, Shirakawa S, Ito M, Wamana S, Oshima T (2009) Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci 14(2):69–72

    Article  Google Scholar 

  • Assemi S, Tadjiki S, Donose BC, Nguyen AV, Miller JD (2010) Aggregation of fullerol C60(OH)24 nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy. Langmuir 26(20):16063–16070

    Article  Google Scholar 

  • Birkett PR (1999) Fullerene chemistry. Annual Report of Progressive Chemistry, Section A. 95:431–451

  • Bogdanovic G, Kojic V, Dordevic A, Canadanovic-Brunet J, Vojinovic-Miloradov M, Baltic VV (2004) Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity. Toxicol In Vitro 18:629–637

    Article  Google Scholar 

  • Bolskar RD, Benedetto AF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson LJ, Alford JM (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc 125:5471–5478

    Article  Google Scholar 

  • Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923

    Article  Google Scholar 

  • Brant J, Lecoanet H, Hotze M, Wiesner M (2005a) Comparison of Electrokinetic Properties of Colloidal Fullerenes (n-C60) Formed Using Two Procedures. Environ Sci Technol 39(17):6343–6351

    Article  Google Scholar 

  • Brant J, Lecoanet H, Wiesner M (2005b) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553

    Article  Google Scholar 

  • Brant JA, Labille J, Bottero J, Wiesner MR (2006) Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 22:3878–3885

    Article  Google Scholar 

  • Brant J, Labille J, Robichaud C, Wiesner M (2007) Fullerol cluster formation in aqueous solutions—implication for environmental release. J Colloid Interface Sci 314:281–288

    Article  Google Scholar 

  • Chao T, Song G, Hansmeier N, Westerhoff P, Herckes P, Halden RU (2011) Characterization and LC-MS/MS based quantification of hydroxylated fullerenes. Anal Chem 83(5):1777–1783

    Article  Google Scholar 

  • Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22:10994–11001

    Article  Google Scholar 

  • Chiang LY, Upasani RB, Swirczewski JW, Soled S (1993) Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J Am Chem Soc 115:563–5457

    Article  Google Scholar 

  • Chiang LY, Wang L, Swirczewski JW, Soled S, Cameron S (1994) Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J Org Chem 59(14):3960–3968

    Article  Google Scholar 

  • Chiang LY, Bhonsle JB, Wang J, Shu SF, Chang TM, Hwu JR (1996) Efficient one-flask synthesis of water-soluble [60]fullerenols. Tetrahedron 52(14):4963–4972

    Article  Google Scholar 

  • Da Ros T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun 8:663–669

    Article  Google Scholar 

  • Dangler M, Burke S, Hering SV, Allen DT (1987) A direct FTIR method for identifying functional groups in size segregated atmospheric aerosols. Atmos Environ 21(4):1001–1004

    Article  Google Scholar 

  • Duncan LK, Jinschek JR, Vikesland PJ (2008) C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge. Environ Sci Technol 42:173–178

    Article  Google Scholar 

  • Gelderman MP, Simakova O, Clogston JD, Patri AK, Siddiqui SF, Vostal AC, Simak J (2008) Adverse effects of fullerenes on endothelial cells: fullerenol C60(OH)24 induced tissue factor and ICAM-1 membrane expression and apoptosis in vitro. Int J Nanomed 3(1):59–68

    Google Scholar 

  • Georgieva AT, Pappu V, Krishna V, Georgiev PG, Ghiviriga I, Indeglia P, Fan ZH, Koopman B, Pardalos PM, Moudgil B (2013) Polyhydroxy fullerenes. J Nanopart Res 15:1690–1707

    Article  Google Scholar 

  • Guirado-Lopez R, Rincon M (2006) Structural and optical properties of highly hydroxylated fullerenes: stability of molecular domains on the C60 surface. J Chem Phys 125(154312):1–10

    Google Scholar 

  • Hamley AW (2007) Peptide Fibrillization. Angew Chem Int Ed 46:8128–8147

    Article  Google Scholar 

  • Haufler RE, Conceicao J, Chibante PF, Chai Y, Byrne NE, Flanagan S, Haley MM, O’Brien SC, Pan C, Xiao Z, Billups WE, Ciufolini MA, Hauge RH, Margrave JL, Wilson LJ, Curl RF, Smalley RE (1990) Efficient production of C60 and C60H36 and the solvated buckide ion. J Phys Chem 94:8634–8636

    Article  Google Scholar 

  • Heymann D (1996) Solubility of fullerenes C60 and C70 in water. Fullerene Sci Technol 4:543–544

    Article  Google Scholar 

  • Hou W, Kong L, Wepasnick K, Zepp R, Fairbrother D, Javfert C (2010) Photochemistry of aqueous C60 clusters: wavelength dependency and product characterization. Environ Sci Technol 44:8121–8127

    Article  Google Scholar 

  • Husebo LO, Sitharaman B, Furukawa K, Kato T, Wilson LJ (2004) Fullerenols revisited as stable radical anions. J Am Chem Soc 126:12055–12064

    Article  Google Scholar 

  • Indeglia PA, Krishna VB, Georgieva A, Bonzongo JCJ (2013) Mechanical transformation of fullerene (C60) to aqueous nano-C60 (aqu-nC60) in the presence and absence of light. J Nanopart Res 15:2069–2085

    Article  Google Scholar 

  • Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V (2006a) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91(1):173–183

    Article  Google Scholar 

  • Isakovic A, Markovic Z, Nikolic N, Todorovic-Markovic B, Vranjes-Djuric S, Harhaji L, Raicevic N, Romcevic N, Vailjevic-Radovic D, Dramicanin M, Trajkovic V (2006b) Inactivation of nanocrystalline C60 cytotoxicity by γ-irradiation. Biomaterials 27:5049–5058

    Article  Google Scholar 

  • Kamaras K, Akselrod L, Roth S, Mittelbach A, Hiinle W, von Schnering HG (1993) The orientational phase transition in C60 films followed by infrared spectroscopy. Chem Phys Lett 214(3,4):338–344

    Article  Google Scholar 

  • Kamat JP, Devasagayam TPA, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61

    Article  Google Scholar 

  • Kokubo K, Matsubayashi K, Tategaki H, Takada H, Oshima T (2007) Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACSNano. 2(2):327–333

    Google Scholar 

  • Kong L, Tedrow O, Chan YF, Zepp RG (2009) Light-initiated transformations of fullerenol in aqueous Media. Environ Sci Technol 43:9155–9160

    Article  Google Scholar 

  • Kovochich M, Espinasse B, Auffan M, Hotze EM, Wessel L, Xia T, Nel AE, Wiesner MR (2009) Comparative Toxicity of C60 Aggregates toward Mammalian Cells: role of Tetrahydrofuran (THF) Decomposition. Environ Sci Technol 43:6378–6384

    Article  Google Scholar 

  • Krishna K, Noguchi N, Koopman B, Moudgil B (2006) Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. J Colloid Interface Sci 304:166–171

    Article  Google Scholar 

  • Krishna V, Yanes D, Imaram W, Angerhofer A, Koopman B, Moudgil B (2008) Mechanism of enhanced photocatalysis with polyhydroxy fullerenes. Appl Catal B 79:376–381

    Article  Google Scholar 

  • Lecoanet H, Bottero J, Wiesner M (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169

    Article  Google Scholar 

  • Lee J, Cho M, Fortner JD, Hughes JB, Kim J (2009) Transformation of aggregated C60 in the aqueous phase by UV irradiation. Environ Sci Technol 43(13):4878–4883

  • Li J, Takeuchi A, Ozawa M, Li X, Saigo K, Kitazawa K (1993) C60 fullerol formation catalysed by quaternary ammonium hydroxides. Chemical Communications. 23:1784–1785

    Article  Google Scholar 

  • Makarova TL (2001) Electrical and optical properties of pristine and polymerized fullerenes. Semiconductors 35(3):243–278 Translated from Fizika i Tekhnika Poluprovodnikov, 2001, 35 (3), 257–293

    Article  Google Scholar 

  • Markovic Z, Todorovic-Markovica B, Kleuta D, Nikolica N, Vranjes-Djurica S, Misirkicb M, Vucicevicb L, Janjetovicb K, Isakovic A, Harhajib L, Babic-Stojica B, Dramicanina M, Trajkovic V (2007) The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28:5437–5448

    Article  Google Scholar 

  • Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K, Makamura S, Mochizuki M (2005) Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg Med Chem Lett 15:1107–1109

    Article  Google Scholar 

  • Nakamura Y, Ueno H, Kokubo K, Ikuma N, Oshima T (2013) Magic number effect on cluster formation of polyhydroxylated fullerenes in water-alcohol binary solution. J Nanopart Res 15:1755–1761

    Article  Google Scholar 

  • Ozawa M, Li J, Kishio K, Tadano A, Aogaki R (1995) Physics and chemistry of fullerenes and derivatives. In: proceedings of the international winterschool on electronic properties of novel materials

  • Podolski IY, Podlubnaya ZA, Kosenkol EA, Mugantseva EA, Makarova EG, Marsagishvili LG, Shpagina MD, Kaminsky GY, Andrievsky GV, Klochkov VK (2007) Effects of hydrated forms of c60 fullerene on amyloid β-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol 7:1–7

    Article  Google Scholar 

  • Rouse J, Yang J, Ryman-Rasmussen J, Baron A, Monteiro-Riviere N (2007) Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticle through skin. Nano Lett 7(1):155–160

    Article  Google Scholar 

  • Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of fullerene (C60) in a variety of solvents. J Phys Chem 97(13):3379–3383

    Article  Google Scholar 

  • Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W, Schwartz LB, Lenk R, Kepley CL (2007) Fullerene nanomaterials inhibit the allergic response. J Immunol 179:665–672

    Article  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4(10):1881–1887

    Article  Google Scholar 

  • Schreiner KM, Filley TR, Blanchette RA, Bowen BB, Bolskar RD, Hockaday WC, Masiello CA, Raebiger JW (2009) White-rot basidiomycete-mediated decomposition of C60 fullerol. Environ Sci Technol 43:3162–3168

    Article  Google Scholar 

  • Semenov KN, Charykov NA, Keshinov VN (2011) Fullerenol synthesis and identification. Properties of the fullerenol water solutions. J Chem Eng Data 56:230–239

    Article  Google Scholar 

  • Taylor R, Walton D (1993) The chemistry of fullerenes. Nature 363:685–693

    Article  Google Scholar 

  • Tzoupis H, Leonis G, Durdagi S, Mouchlis V, Mavromoustakos T, Papadopolus MG (2011) Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations. J Comput Aided Mol Design 25:959–976

    Article  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits oxidative stress response in embryonic zebrafish. Appl Pharmacol 229:44–55

    Article  Google Scholar 

  • Vileno B, Marcoux PR, Lekka M, Sienkiewicz A, Fehér T, Forró L (2006) Spectroscopic and photophysical properties of a highly derivatized C60 fullerol. Adv Funct Mater 16:120–128

    Article  Google Scholar 

  • Vileno B, Jeney S, Marcoux PR, Miller LM, Forro L (2010) Evidence of lipid peroxidation and protein phosphorylation in cells upon oxidative stress photo-generated by fullerols. Biophys Chem 152:164–169

    Article  Google Scholar 

  • Wei X, Wu M, Qi L, Xu Z (1997) Selective solution-phase generation and oxidation reaction of C n−60 (n = 1, 2) and formation of an aqueous colloidal solution of C60. J Chem Soc, Perkin Transmissions 2:1389–1393

    Article  Google Scholar 

  • Xing G, Zhang J, Zhao Y, Tang J, Zhang B, Gao X, Yuan H, Qu L, Cao W, Chai Z, Ibrahim K, Su R (2004) Influences of structural properties on stability of fullerenols. J Phys Chem B 108:11473–11479

    Article  Google Scholar 

  • Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, Ma L, Yiming S, Zhao Y, Chen C (2013) Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for hiv-1 vaccine. Adv Mater 25:5928–5936

    Article  Google Scholar 

  • Zhao B, He Y, Bilski PJ, Chignell CF (2008a) Pristine (C60) and hydroxylated [C60(OH)24] fullerene phototoxicity towards HaCaT keratinocytes: type I versus type II mechanisms. Chem Res Toxicol 21:1056–1063

    Article  Google Scholar 

  • Zhao B, Bilski PJ, He Y, Feng L, Chignell CF (2008b) Photo-induced ROS generation by different water-soluble C60 and their cytotoxicity in human keratinocytes. Photochem Photobiol 84:1215–1223

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF Grant EEC-94-02989), the Particle Engineering Research Center at the Department of Materials Science and Engineering, University of Florida, Brij Moudgil, Ph.D., and Ben Koopman, Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Indeglia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2014_2599_MOESM1_ESM.docx

Additional FTIR spectroscopy and XPS figures are available for review. This material is available free of charge at http://www.springer.com. (DOCX 647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indeglia, P.A., Georgieva, A., Krishna, V.B. et al. Physicochemical characterization of fullerenol and fullerenol synthesis by-products prepared in alkaline media. J Nanopart Res 16, 2599 (2014). https://doi.org/10.1007/s11051-014-2599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2599-4

Keywords

Navigation