Skip to main content
Log in

Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In recent years, there has been increasing concern regarding the fate and transport of engineered nanoparticles (NPs) in environmental systems and the potential impacts on human and environmental health due to the exponential increase in commercial and industrial use worldwide. To date, there have been relatively few field-scale studies or laboratory-based studies on environmentally relevant soils examining the chemical/physical behavior of the NPs following release into natural systems. The objective of this research is to demonstrate the behavior and transformations of iron oxide and silver NPs with different capping ligands within the unsaturated zone. Here, we show that NP transport within the vadose zone is minimal primarily due to heteroaggregation with soil surface coatings with results that >99 % of the NPs remained within 5 cm of the original source after 1 year in intermediate-scale field lysimeters. These results suggest that transport may be overestimated when compared to previous laboratory-scale studies on pristine soils and pure minerals and that future work must incorporate more environmentally relevant parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EDX:

Energy dispersive X-ray

FeO x :

Iron oxide

ICP-MS:

Inductively coupled plasma mass spectrometer

NP:

Nanoparticle

SEM:

Scanning electron microscopy

SR-NOM:

Suwanee River NOM

TEM:

Transmission electron microscopy

References

  • Abbott LC, Maynard AD (2010) Exposure assessment of engineered nanomaterials. Risk Anal 30(11):1634–1644. doi:10.1111/j.1539-6924.2010.01446.x

    Article  Google Scholar 

  • Asmatulu E, Twomey J, Overcash M (2012) Life cycle and nano-products: end-of-life assessment. J Nanopart Res 14(720):1–8. doi:10.1007/s/11051-012-0720-0

    Google Scholar 

  • Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH, and natural organic matter. Sci Total Environ 407(6):2093–2101. doi:10.1016/j.scitotenv.2008.11.022

    Article  Google Scholar 

  • Baalousha M, Maniculea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27(9):1875–1882. doi:10.1897/07-559.1

    Article  Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics. Sci Total Environ 390–396. doi:10.1016/J.SCITOTENV.2007.10.010

  • Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem Mater 12:306–313. doi:10.1021/cm980065p

    Article  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MR, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8(2):1–10. doi:10.137/journal.pone.0057189

    Article  Google Scholar 

  • Cornelius G, Kirby JK, Beak D, Chittleborough D, McLaughlin MJ (2010) A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Environ Chem 7:298–308. doi:10.1071/EN10013

    Article  Google Scholar 

  • Dale AL, Lowry GV, Casman EA (2013) Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol 47:12920–12928. doi:10.1021/es402341t

    Article  Google Scholar 

  • El Badaway AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolamat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266. doi:10.1021/es902240k

    Article  Google Scholar 

  • Environmental Protection Agency (2007) Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils

  • Ferry JL, Craig P, Hexel C, Sisco P, Frey F, Pennington PL, Fulton MH, Scott G, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444. doi:10.1038/nnano.2009.157

    Article  Google Scholar 

  • Gao B, Saiers JE, Ryan J (2006) Pore-scale mechanisms of colloid deposition and mobilization during steady and transient flow through unsaturated granular media. Water Resour Res 42(1):1–9. doi:10.1029/2005WR004233

    Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Methods of soil analysis, Part 1, 2nd edn. Agronomy number 9. American Society of Agronomy, Madison

  • Gilbert B, Ono RK, Ching KA, Kim CL (2009) The effects of nanoparticles aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci 339:285–295. doi:10.1016/j.jcis.2009.07.058

    Article  Google Scholar 

  • Gorham JM, MacCuspie RI, Klein KL, Fairbrother DH, Holbrook RD (2012) UV-induces photochemical transformations of citrate-capped silver nanoparticles suspensions. J Nanopart Res 14(1139):1–16. doi:10.1007/s11051-012-1139-3

    Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216. doi:10.102/ES9015553

    Article  Google Scholar 

  • Hochella MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319(5870):1631–1635. doi:10.1126/science.1141134

    Article  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782–6786

    Article  Google Scholar 

  • Kaplan DI, Powell BA, Demirkanli DI, Fjeld RA, Molz FJ, Serkiz SM, Coates JT (2004) Influence of oxidation states on plutonium mobility during long-term transport through an unsaturated subsurface environment. Environ Sci Technol 38:5053–5068. doi:10.1021/es049406s

    Article  Google Scholar 

  • Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in groundwater at the Nevada Test Site. Nature 397(6714):56–59. doi:10.1038/16231

    Article  Google Scholar 

  • Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225:256–261. doi:10.1016/S0304-8853(00)01255-5

    Article  Google Scholar 

  • Kim B, Murayama M, Colman BP, Hochella MF (2012a) Characterization and environmental implications of nano- and larger TiO2 particles in sewage sludge, and soils amended with sewage sludge. J Environ Monit 14(4):1129–1137. doi:10.1039/c2em10809g

    Article  Google Scholar 

  • Kim H, Phenrat T, Tilton RD, Lowry GV (2012b) Effect of kaolinite, silica fines, and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci 370:1–10. doi:10.1016/j.jcis.2011.12.059

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825. doi:10.1897/-8-090.1

    Article  Google Scholar 

  • Kosmulski M (2002) pH dependent surface charging and points of zero charge. J Colloid Interface Sci 253(1):77–87. doi:10.1006/jcis.2002.8490

    Article  Google Scholar 

  • Kretzschmar R, Sticher H (1997) Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca+2 and trace metals. Environ Sci Technol 31(12):3497–3504. doi:10.1021/es970244s

    Article  Google Scholar 

  • Lefebure S, Dubois E, Cabuil V, Neveu S, Massart R (1998) Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J Mater Res 13:2975–2981. doi:10.1557/JMR.1998.0407

    Article  Google Scholar 

  • Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914. doi:10.1021/es2037405

    Article  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. doi:10.1021/es9035557

    Article  Google Scholar 

  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured Ag nanoparticles in simulated large scale freshwater emergent wetland. Environ Sci Technol 46:7027–7036. doi:10.1021/es204608d

    Article  Google Scholar 

  • Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7:389–407. doi:10.1007/s11051-005-4272-4

    Article  Google Scholar 

  • McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants. Environ Sci Technol 23(5):496–502. doi:10.0013-936X/89/0923-0496

    Google Scholar 

  • McCubbin D, Leonard KS, Emerson HS (2002) Influence of thermal and photochemical reactions upon the redox cycling of Pu between solid and solution phases in seawater. Mar Chem 80:61–77

    Article  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447. doi:10.1021/ES7029637

    Article  Google Scholar 

  • Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314(5799):638–641. doi:10.1126/science.1131307

    Article  Google Scholar 

  • Powell BA, Fjeld RA, Kaplan DI, Coates JT, Serkiz SM (2005) Pu(V)O2 + adsorption and reduction by synthetic Hematite and Goethite. Environ Sci Technol 39:2107–2111

    Article  Google Scholar 

  • Quik JTK, Stuart MC, Wouterse M, Peijnenburn W, Hendriks AJ, Van de Meent D (2012) Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ Toxicol Chem 31(5):1019–1022. doi:10.1002/etc.1783

    Article  Google Scholar 

  • Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426(6964):271–274. doi:10.1038/nature02087

    Article  Google Scholar 

  • Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149:174–180. doi:10.1016/0304-8853(95)00365-7

    Article  Google Scholar 

  • Sagee O, Dror I, Berkowitz B (2012) Transport of silver nanoparticles (AgNPs) in soil. Chemosphere 88(5):670–675. doi:10.1016/j.chemosphere.2012.03.055

    Article  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193. doi:10.1021/cm0218108

    Article  Google Scholar 

  • Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387–2397. doi:10.1007/s11051-010-9999-x

    Article  Google Scholar 

  • Stebounova LV, Gio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13(1):233–244. doi:10.1007/s11051-0022-3

    Article  Google Scholar 

  • Waite TA (1990) Photo-redox processes at the mineral–water interface. In: Hochella MF, White AF (eds) Mineral–water interface geochemistry, vol 23. Mineralogical Society of America, Washington, DC, pp 559–601

  • Wang X, Li Q, Hu F, Zhang Z, Zhou Z (2005) Dissolution of kaolinite induced by citric, oxalic, and malic acids. J Colloid Interface Sci 290:481–488. doi:10/1016/j.jcis.2005.04.066

    Article  Google Scholar 

  • Wang C, Liu H, Sun Z (2012) Heterogeneous photo-Fenton reaction catalyzed by nanosized iron oxides for water treatment. Int J Photoenergy 1–10. doi:10.1155/2012/801694

  • Wiesner MR, Lowry GV, Jones KL, Hochella MF, Giulio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43(17):6458–6462. doi:10.1021/es803621k

    Article  Google Scholar 

  • Williams AGB, Scherer MM (2004) Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide–water interface. Environ Sci Technol 38:4782–4790. doi:10.1021/es049373g

    Article  Google Scholar 

  • Woodrow Wilson Center (2013) Project on emerging nanotechnologies: inventories. http://www.nanotechproject.org/inventories/. Accessed 2 June 2013

  • Zhang W-X, Elliott D (2006) Applications of iron nanoparticles for groundwater remediation. Remediation 16:7. doi:10.1002/REM.20078

    Article  Google Scholar 

  • Zhou D, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46(14):7520–7526. doi:10.1021/es3004427

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Bin Qi for TEM imaging, Dan D’Unger for iron oxide nanoparticle synthesis, Jonathan Ball for assistance with preliminary studies, and funding by the National Science Foundation Project number 1057633 “Evaluation of Nanoparticle Behavior During Transitions from Engineered to Natural Systems.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hilary P. Emerson or Brian A. Powell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerson, H.P., Hart, A.E., Baldwin, J.A. et al. Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study. J Nanopart Res 16, 2258 (2014). https://doi.org/10.1007/s11051-014-2258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2258-9

Keywords

Navigation