Skip to main content
Log in

Investigations on the role of Ni-catalyst for the VLS growth of quasi-aligned GaN nanowires by chemical vapor deposition

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report the fabrication of quasi-aligned GaN nanowires (NWs) on Si(111) substrate by chemical vapor deposition using Ni as a catalyst. The structural and composition analysis of Ni-catalyst on the apex of the GaN NWs were investigated using high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The catalyst contains only Ni–Ga alloy with the composition of ~66:33 having Ni3Ga phase. GaN NWs exhibit wurtzite structure without any amorphous sheath layer or cubic inclusions, where the catalyst contains the mixture of both the crystalline and amorphous phases. During growth, the nitrogen radicals are expected to migrate on the surface of the catalytic droplet to incorporate into the growing lattice via the solid–liquid interface due to poor solubility of N in Ni, which forbids the alloying of nitrogen with Ni. Temperature-dependent photoluminescence reveals that the intensity of donor-bound exciton (D0X) peak consistently increases with a blue shift as the temperature decreases. The D0X peak is centered at 3.467 eV for 10 K. Interestingly, yellow band, the characteristic nature of defects-induced luminescence, is absent in Ni-catalytic-assisted growth of GaN NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Byeun Y, Han K, Choi SC (2006) Single crystal growth of one-dimensional GaN nanostructures by halide vapor-phase epitaxy. J Electroceram 17(24):903–907

    Article  CAS  Google Scholar 

  • Cai XM, Djurišić AB, Xie MH (2006) GaN nanowires: CVD synthesis and properties. Thin Solid Films 515(3):984–989

    Article  CAS  Google Scholar 

  • Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3(2):149–152

    Article  CAS  Google Scholar 

  • Chèze C, Geelhaar L, Brandt O, Weber WM, Riechert H, Münch S, Rothemund R, Reitzenstein R, Forchel A, Kehagias T, Komninou P, Dimitrakopulos GP, Karakostas T (2010a) Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Res 3:528–536

    Article  Google Scholar 

  • Chèze C, Geelhaar L, Trampert A, Brandt O, Weber WM, Riechert H (2010b) Collector phase transitions during vapor−solid−solid nucleation of GaN nanowires. Nano Lett 10(9):3426–3431

    Article  Google Scholar 

  • Chèze C, Geelhaar L, Jenichen B, Riechert H (2010c) Different growth rates for catalyst-induced and self-induced GaN nanowires. Appl Phys Lett 97:153105

    Article  Google Scholar 

  • Debnath RK, Meijers R, Richter T, Stoica T, Calarco R, Lüth H (2007) Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111). Appl Phys. Lett 90:123117

    Article  Google Scholar 

  • Diaz RE, Sharmaa R, Jarvis K, Zhanga Q, Mahajan S (2012) Direct observation of nucleation and early stages of growth of GaN nanowires. J Cryst Growth 341:1–6

    Article  CAS  Google Scholar 

  • Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69

    Article  CAS  Google Scholar 

  • Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245

    Article  CAS  Google Scholar 

  • Dubrovskii VG, Sibirev NV, Cirlin GE, Soshnikov IP, Chen WH, Larde R, Cadel E, Pareige P, Xu T, Gridier B, Nys JP, Stievenard D, Moewe M, Chuang LC, Chang-Hasnain C (2009) Gibbs–Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys Rev. B 79:205316

    Article  Google Scholar 

  • Ducher R, Kainuma R, Ishida K (2007) Phase equilibria in the Ni-rich portion of the Ni–Ga binary system. Intermetallics 15:148–153

    Article  CAS  Google Scholar 

  • Geelhaar L, Chèze C, Weber WM, Averbeck R, Riechert H, Kehagias Th, Komninou Ph, Dimitrakopulos GP, Karakostas Th (2007) Axial and radial growth of Ni-induced GaN nanowires. Appl Phys Lett 91:093113

    Article  Google Scholar 

  • Gradecak S, Qian F, Li Y, Park HG, Lieber CM (2005) GaN nanowire lasers with low lasing thresholds. Appl Phys Lett 87:173111

    Article  Google Scholar 

  • Gröbner J, Wenzel R, Fischer GG, Schmid-Fetzer RJ (1999) Thermodynamic calculation of the binary systems M-Ga and investigation of ternary M-Ga-N phase equilibria (M = Ni, Co, Pd, Cr). J Phase Equilibria 20(6):615–625

    Article  Google Scholar 

  • Harm JC, Tchernycheva M, Patriarche G, Travers L, Glas F, Cirlin G (2007) GaAs nanowires formed by Au-assisted molecular beam epitaxy: effect of growth temperature. J Cryst Growth 301:853–856

    Google Scholar 

  • Hashimoto M, Tanaka H, Asano R, Hasegawa S, Asahi H (2004) Observation of photoluminescence emission in ferromagnetic semiconductor GaCrN. Appl Phys Lett 84(21):4191–4193

    Article  CAS  Google Scholar 

  • Huang Y, Duan X, Cui Y, Lieber CM (2002) Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett 2(5):487–490

    Article  Google Scholar 

  • Kodambaka S, Tersoff J, Reuter MC, Ross FM (2006) Diameter-independent kinetics in the vapor–liquid–solid growth of si nanowires. Phys Rev Lett 96:096105

    Article  CAS  Google Scholar 

  • Kuykendall T, Pauzauskie P, Lee S, Zhang Y, Goldberger J, Yang P (2003) Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett 3(8):1063–1066

    Article  CAS  Google Scholar 

  • Lari L, Murray RT, Bullough TJ, Chalker PR, Gass M, Cheze C, Geelhaar L, Riechert H (2008) Nanoscale compositional analysis of Ni-based seed crystallites associated with GaN nanowire growth. Physica E 40:2457–2461

    Article  CAS  Google Scholar 

  • Lekhal K, Avit G, Andre Y, Trassoudaine A, Gil E, Varenne C, Bougerol C, Monier G, Castelluci D (2012) Catalyst-assisted hydride vapor phase epitaxy of GaN nanowires: exceptional length and constant rod-like shape capability. Nanotechnology 23:405601

    Article  CAS  Google Scholar 

  • Leroux M, Grjean N, Beaumont B, Nataf G, Semond F, Massies J, Gibart P (1999) Temperature quenching of photoluminescence intensities in undoped and doped GaN. J Appl Phys 86(7):3721–3728

    Article  CAS  Google Scholar 

  • Li J, Nam KB, Kim KH, Lin JY, Jiang HX (2001) Growth and optical properties of InxAlyGa1−x−yN quaternary alloys. Appl Phys Lett 78(1):61–63

    Article  CAS  Google Scholar 

  • Meijers R, Richter T, Calarco R, Stoica T, Bochem HP, Marso M, Luth H (2006) GaN-nanowhiskers: MBE-growth conditions and optical properties. J Cryst Growth 289:381–386

    Article  CAS  Google Scholar 

  • Ra YH, Navamathavan R, Park JH, Lee CR (2013) High-quality uniaxial InxGa1−xN/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication ACS. Appl Mater Interfaces 5:2111–2117

    Article  CAS  Google Scholar 

  • Robins LH, Bertness KA, Barker JM, Sanford NA, Schlager JB (2007) Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. I: near-band-edge luminescence and strain effects. J Appl Phys 101:113505

    Article  Google Scholar 

  • Roper SM, Anderson AM, Davis SH, Voorhees PW (2010) Radius selection and droplet unpinning in vapor–liquid–solid-grown nanowires. J Appl Phys 107:114320

    Article  Google Scholar 

  • Reshchikova MA, Morkoc H (2005) Luminescence properties of defects in GaN. J Appl Phys 97:061301

    Article  Google Scholar 

  • Seifert W, Borgstrom M, Deppert K, Dick KA, Johansson J, Larsson MW, Martensson T, Skold N, Svensson CPT, Wacaser BA, Wallenberg LR, Samuelson L (2004) Growth of one-dimensional nanostructures in MOVPE. J Cryst Growth 272:211–220

    Article  CAS  Google Scholar 

  • Stoica T, Sutter E, Meijers RJ, Debnath RK, Calarco R, Luth H, Grutzmacher D (2008) Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires. Small 4(6):751–754

    Article  CAS  Google Scholar 

  • Uchida K, Tang T, Goto S, Mishima T, Niwa A, Gotoh JJ (1999) Spiral growth of InGaN/InGaN quantum wells due to Si doping in the barrier layers. Appl Phys Lett 74(8):1153–1155

    Article  CAS  Google Scholar 

  • Venugopalan HS, Mohney SE, Luther BP, Wolter SD, Redwing JM (1997) Interfacial reactions between nickel thin films and GaN. J Appl Phys 82(2):650–654

    Article  CAS  Google Scholar 

  • Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90

    Article  CAS  Google Scholar 

  • Wen CY, Reuter MC, Bruley J, Tersoff J, Kodambaka S, Stach EA, Ross FM (2009) Formation of compositionally abrupt heterojunctions in silicon-germanium nanowires. Science 326(5957):1247–1250

    Article  CAS  Google Scholar 

  • Weng X, Burke RA, Redwing JM (2009) The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal–organic chemical vapor deposition. Nanotechnology 20:085610

    Article  Google Scholar 

  • Wriedt HA, Nash P (1991) Phase diagrams of binary nickel alloys. ASM International, Materials Park, pp 213–216

    Google Scholar 

  • Yan R, Gargas D, Yang P (2009) Nanowire photonics. Nat Photonics 3:569–576

    Article  CAS  Google Scholar 

  • Yoo J, Hong YJ, An SJ, Yi CB, Joo T, Kim JW, Lee JS (2006) Photoluminescent characteristics of Ni-catalyzed GaN nanowires. Appl Phys Lett 89:043124

    Article  Google Scholar 

  • Zhou X, Chesin J, Crawford S, Gradecak S (2012) Using seed particle composition to control structural and optical properties of GaN nanowires. Nanotechnology 23:285603

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors K.J thanks Department of Science and Technology (DST), Govt. of India for the financial assistances under Project No. SR/FTP/PS-64/2007 and SR/NM/NS-77/2008. V.P acknowledges CSIR, Govt. of India for the award of senior research fellowship (SRF). Authors acknowledge Dr. P.V. Satyam, Institute of Physics, Bhubaneswar, India for TEM measurements. Author V. P acknowledges P. Sundara Venkatesh and R. Parameshwari for the technical assistance and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jeganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purushothaman, V., Jeganathan, K. Investigations on the role of Ni-catalyst for the VLS growth of quasi-aligned GaN nanowires by chemical vapor deposition. J Nanopart Res 15, 1789 (2013). https://doi.org/10.1007/s11051-013-1789-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1789-9

Keywords

Navigation