Skip to main content
Log in

Hydroxyethylated graphene oxide as potential carriers for methotrexate delivery

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, we presented a simple approach to prepare hydroxyethylated graphene oxide (HE-GO) with high water solubility and physiological stability. The successful synthesis of HE-GO was confirmed by UV–Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The loading of anticancer drug methotrexate (MTX) onto this nanocarrier (MTX/HE-GO) was investigated. The results of in vitro drug release experiment showed that the rate of MTX release from MTX/HE-GO was pH dependent. Moreover, cell viability assay demonstrated that HE-GO loaded with MTX exhibits higher anticancer activity against human lung adenocarcinoma epithelial cell line than non-vehicle MTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Chen S, Wu G, Chen D (2006) An easy approach to hydroxyethylated SWNTs and the high thermal stability of the inner grafted hydroxyethyl groups. Nanotechnology 17:2368–2372

    Article  CAS  Google Scholar 

  • Choucair A, Soo PL, Eisenberg A (2005) Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir 21:9308–9313

    Article  CAS  Google Scholar 

  • Fan JQ, Fang G, Wang XD, Zeng F, Xiang YF, Wu SZ (2011) Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles. Nanotechnology 22:455102

    Article  Google Scholar 

  • Gillies ER, Frechet JM (2005) pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem 16:361–368

    Article  CAS  Google Scholar 

  • Grim J, Chládek J, Martínková J (2003) Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 42(2):139–151

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880

    Article  CAS  Google Scholar 

  • Kakran M, Sahoo NG, Bao H, Pan Y, Li L (2011) Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid. Curr Med Chem 18:4503–4512

    Article  CAS  Google Scholar 

  • Kim H, Namgung R, Singha K, Oh IK, Kim WJ (2011) Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22:2558–2567

    Article  CAS  Google Scholar 

  • Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3:2607–2615

    Article  CAS  Google Scholar 

  • Liu Z, Robinson JT, Sun XM, Dai HJ (2008) PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  • Lu YH, Yang XY, Ma YF, Huang Y, Chen YS (2008) A novel nanohybrid of daunomycin and single-walled carbon nanotubes: photophysical properties and enhanced electrochemical activity. Biotechnol Lett 30:1031–1035

    Article  CAS  Google Scholar 

  • Lu CH, Li J, Liu JJ, Yang HH, Chen X, Chen GN (2010) Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene Oxide as the “nanoquencher”. Chem Eur J 16:4889–4894

    Article  CAS  Google Scholar 

  • Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 1:399–405

    Article  CAS  Google Scholar 

  • Petit C, Seredych M, Bandosz TJ (2009) Revisting the chemistry of graphite oxide and its effect on ammonia adsorption. J Mater Chem 19:9176–9185

    Article  CAS  Google Scholar 

  • Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF, Li L, Tan LP (2011) Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 47:5235–5237

    Article  CAS  Google Scholar 

  • Santos MA, Enyedy EA, Nuti E, Rossello A, Krupenko NI, Krupenko SA (2007) Methotrexate gamma-hydroxamate derivatives as potential dual target antitumor drugs. Bioorg Med Chem 15:1266–1274

    Article  CAS  Google Scholar 

  • Shen H, Liu M, He H, Zhang L, Huang J, Chong Y, Dai J, Zhang Z (2012) PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl Mater Interfaces 4:6317–6323

    Article  CAS  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  • Wu J, Wang YS, Yang XY, Liu YY, Yang JR, Yang R, Zhang N (2012) Graphene oxide used as carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology 23(35):355101

    Article  Google Scholar 

  • Yang XY, Zhang XY, Liu ZF, Ma YF, Huang Y, Chen YS (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    Article  CAS  Google Scholar 

  • Yang J, Yan X, Wu M, Chen F, Fei Z, Zhong M (2012) Self-assembly between graphene sheets and cationic poly(methyl methacrylate) (PMMA) particles: preparation and characterization of PMMA/graphene composites. J Nanopart Res 14:717

    Article  Google Scholar 

  • Zhang LM, Xia JG, Zhao QH, Liu LW, Zhang ZJ (2010) Functional graphene oxide as nanocarriers for controlled loading and targeted delivery of mixed anticancer drugs. Small 6:537–544

    Article  CAS  Google Scholar 

  • Zhu S, Li J, Chen Y, Chen Z, Chen C, Li Y, Cui Z, Zhang D (2012) Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release. J Nanopart Res 14:1132

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 91227122 & 90813021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libo Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Suo, S., Luo, D. et al. Hydroxyethylated graphene oxide as potential carriers for methotrexate delivery. J Nanopart Res 15, 1708 (2013). https://doi.org/10.1007/s11051-013-1708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1708-0

Keywords

Navigation