Skip to main content
Log in

Control growth of single crystalline ZnO nanorod arrays and nanoflowers with enhanced photocatalytic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Single crystalline vertical nanorod arrays and nanoflowers of ZnO have been grown in situ on cheap zinc foils under hydrothermal conditions, by means of hexamethylenetetramine and ethanolamine, respectively. Their morphologies and crystal structures are characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The nanorods and flowers of ZnO grew along the \( \{ 10\bar{1}1\} \) and \( \{ 0001\} \) planes, respectively. Both types of ZnO display high photocatalytic ability toward the degradation of methylene orange under UV irradiation. The ZnO nanorods show better performance than that of the ZnO nanoflowers, and the \( \{ 10\bar{1}1\} \) facets of the ZnO nanorods have higher photoactivity than that of the \( \{ 000\bar{1}\} \) or \( \{ 10\bar{1}0\} \) crystal planes. This is because the weaker coordinated O atoms on the surface are more likely to be saturated by H atoms in aqueous solution, thereby releasing more free OH radicals.

Graphical Abstract

A facile method was developed for selective control synthesis of ZnO nanoflowers and nanorod arrays on Zinc foil, with the assistance of ethanolamine and the hexamethylenetetramine, respectively. The illustration shows the time evolution of the two ZnO structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai P, Wu PP, Yan ZF, Zhou JK, Zhao XS (2007) Self-assembly of clewlike ZnO superstructures in the presence of copolymer. J Phys Chem C 111:9729–9733

    Article  CAS  Google Scholar 

  • Brewster MM, Zhou X, Lu M-Y, Gradecak S (2012) The interplay of structural and optical properties in individual ZnO nanostructures. Nanoscale 4:1455–1462

    Article  CAS  Google Scholar 

  • Chang J, Waclawik ER (2012) Facet-controlled self-assembly of ZnO nanocrystals by non-hydrolytic aminolysis and their photodegradation activities. CrystEngComm 14:4041–4048

    Article  CAS  Google Scholar 

  • Cheng Q, Ostrikov K (2011) Temperature-dependent growth mechanisms of low-dimensional ZnO nanostructures. CrystEngComm 13:3455–3461

    Article  CAS  Google Scholar 

  • Cheng JP, Zhang XB, Luo ZQ (2008) Oriented growth of ZnO nanostructures on Si and Al substrates. Surf Coat Technol 202:4681–4686

    Article  CAS  Google Scholar 

  • Cho S, Jang J-W, Lee JS, Lee K-H (2010) Exposed crystal face controlled synthesis of 3D ZnO superstructures. Langmuir 26:14255–14262

    Article  CAS  Google Scholar 

  • Djurisic AB, Chen X, Leung YH, Ng AMC (2010) ZnO nanostructures: growth, properties and applications. J Mater Chem 2:1674–1683

    Google Scholar 

  • Fan HJ, Scholz R, Kolb FM, Zacharias M, Gosele U (2004) Growth mechanism and characterization of zinc oxide microcages. Solid State Commun 130:517–521

    Article  CAS  Google Scholar 

  • Feng Y, Zhang M, Guo M, Wang X (2010) Studies on the PEG-assisted hydrothermal synthesis and growth mechanism of ZnO microrod and mesoporous microsphere arrays on the substrate. Cryst Growth Des 10:1500–1507

    Article  CAS  Google Scholar 

  • Feng J-J, Liao Q-C, Wang A-J, Chen J-R (2011) Mannite supported hydrothermal synthesis of hollow flower-like ZnO structures for photocatalytic applications. CrystEngComm 13:4202–4210

    Article  CAS  Google Scholar 

  • Gao XD, Li XM, Yu WD (2005) Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc–ethylenediamine complex. J Phys Chem B 109:1155–1161

    Article  CAS  Google Scholar 

  • Gonzalez-Valls I, Lira-Cantu M (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34

    Article  CAS  Google Scholar 

  • Greene LE, Yuhas BD, Law M, Zitoun D, Yang PD (2006) Solution-grown zinc oxide nanowires. Inorg Chem 45:7535–7543

    Article  CAS  Google Scholar 

  • Hambrock J, Rabe S, Merz K, Birkner A, Wohlfart A, Fischer RA, Driess M (2003) Low-temperature approach to high surface ZnO nanopowders and a non-aqueous synthesis of ZnO colloids using the single-source precursor [MeZnOSiMe3]4 and related zinc siloxides. J Mater Chem 13:1731–1736

    Article  CAS  Google Scholar 

  • Jiang P, Zhou JJ, Fang HF, Wang CY, Wang ZL, Xie SS (2007) Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv Funct Mater 17:1303–1310

    Article  CAS  Google Scholar 

  • Kim KS, Jeong H, Jeong MS, Jung GY (2010) Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity. Adv Funct Mater 20:3055–3063

    Article  CAS  Google Scholar 

  • Kuo C-L, Kuo T-J, Huang MH (2005) Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J Phys Chem B 109:20115–20121

    Article  CAS  Google Scholar 

  • Li C, Hong G, Wang P, Yu D, Qi L (2009) Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chem Mater 21:891–897

    Article  CAS  Google Scholar 

  • Lin Y-R, Yang S-S, Tsai S-Y, Hsu H-C, Wu S-T, Chen IC (2006) Visible photoluminescence of ultrathin ZnO nanowire at room temperature. Cryst Growth Des 6:1951–1955

    Article  CAS  Google Scholar 

  • Liu F, Cao PJ, Zhang HR, Shen CM, Wang Z, Li JQ, Gao HJ (2005) Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. J Cryst Growth 274:126–131

    Article  CAS  Google Scholar 

  • Liu X, Afzaal M, Ramasamy K, Orien P, Akhtar J (2009) Synthesis of ZnO hexagonal single-crystal slices with predominant (0001) and (0001) facets by poly(ethylene glycol)-assisted chemical bath deposition. J Am Chem Soc 131:15106–15107

    Article  CAS  Google Scholar 

  • Liu X, Zhang J, Wang L, Yang T, Guo X, Wu S, Wang S (2010) 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors. J Mater Chem 21:349–356

    Article  Google Scholar 

  • Liu J, Xu L, Wei B, Lv W, Gao H, Zhang X (2011) One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate. CrystEngComm 13:1283–1286

    Article  CAS  Google Scholar 

  • Lu YF, Fan HY, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398:223–226

    Article  CAS  Google Scholar 

  • Lu F, Cai WP, Zhang YG (2008) ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Funct Mater 18:1047–1056

    Article  CAS  Google Scholar 

  • Macias-Montero M, Borras A, Saghi Z, Romero-Gomez P, Sanchez-Valencia JR, Gonzalez JC, Barranco A, Midgley P, Cotrino J, Gonzalez-Elipe AR (2012) Superhydrophobic supported Ag-NPs@ZnO-nanorods with photoactivity in the visible range. J Mater Chem 22:1341–1346

    Article  CAS  Google Scholar 

  • Mao J, Li J-J, Ling T, Liu H, Yang J, Du X-W (2011) Facile synthesis of zinc hydroxide carbonate flowers on zinc oxide nanorods with attractive luminescent and optochemical performance. Nanotechnology 22:245607

    Article  Google Scholar 

  • Mare B, Mollar M, Mechkour A, Hartiti B, Perales M, Cembrero J (2004) Optical properties of nanocolumnar ZnO crystals. Microelectron J 35:79–82

    Article  Google Scholar 

  • Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041103–041301

    Article  Google Scholar 

  • Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949

    Article  CAS  Google Scholar 

  • Patrinoiu G, Tudose M, Calderon-Moreno JM, Birjega R, Budrugeac P, Ene R, Carp O (2012) A green chemical approach to the synthesis of photoluminescent ZnO hollow spheres with enhanced photocatalytic properties. J Solid State Chem 186:17–22

    Article  CAS  Google Scholar 

  • Pickardt J, Droas P (1989) Structure of bis(hexamethylenetetramine)diiodozinc(II). Acta Crystallogr C 45:360–363

    Article  Google Scholar 

  • Sun Y, George Ndifor-Angwafor N, Jason Riley D, Ashfold MNR (2006) Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chem Phys Lett 431:352–357

    Article  CAS  Google Scholar 

  • Tang Q, Zhou WJ, Shen JM, Zhang W, Kong LF, Qian YT (2004) A template-free aqueous route to ZnO nanorod arrays with high optical property. Chem Commun 712–713

  • Tang H, Meng G, Huang Q, Zhang Z, Huang Z, Zhu C (2011) Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv Funct Mater 22:218–224

    Article  Google Scholar 

  • Umar A, Kim SH, Im YH, Hahn YB (2006) Structural and optical properties of ZnO micro-spheres and cages by oxidation of metallic Zn powder. Superlattice Microstruct 39:238–246

    Article  CAS  Google Scholar 

  • Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466

    Article  CAS  Google Scholar 

  • Vayssieres L, Keis K, Hagfeldt A, Lindquist S-E (2001) Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater 13:4395–4398

    Article  CAS  Google Scholar 

  • Wang XD, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4:423–426

    Article  CAS  Google Scholar 

  • Wang CH, Wong ASW, Ho GW (2007) Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 23:11960–11963

    Article  CAS  Google Scholar 

  • Wang X, Zhang Q, Wan Q, Dai G, Zhou C, Zou B (2011) Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity. J Phys Chem C 115:2769–2775

    Article  CAS  Google Scholar 

  • Wang A-J, Liao Q-C, Feng J-J, Zhang P-P, Li A-Q, Feng J-J (2012) Apple pectin-mediated green synthesis of hollow double-caged peanut-like ZnO hierarchical superstructures and photocatalytic applications. CrystEngComm 14:256–263

    Article  CAS  Google Scholar 

  • Wu X, Bai H, Li C, Lu G, Shi G (2006) Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature. Chem Commun 15:1655–1657

    Article  Google Scholar 

  • Xu LF, Guo Y, Liao Q, Zhang JP, Xu DS (2005) Morphological control of ZnO nanostructures by electrodeposition. J Phys Chem B 109:13519–13522

    Article  CAS  Google Scholar 

  • Xu F, Yuan ZY, Du GH, Halasa M, Su BL (2007) High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties. Appl Phys A 86:181–185

    Article  CAS  Google Scholar 

  • Yang HG, Zeng HC (2004) Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J Phys Chem B 108:3492–3495

    Article  CAS  Google Scholar 

  • Yoshimura M, Byrappa K (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103

    Article  CAS  Google Scholar 

  • Yu Q, Fu W, Yu C, Yang H, Wei R, Li M, Liu S, Sui Y, Liu Z, Yuan M, Zou G, Wang G, Shao C, Liu Y (2007) Fabrication and optical properties of large-scale ZnO nanotube bundles via a simple solution route. J Phys Chem C 111:17521–17526

    Article  CAS  Google Scholar 

  • Zeng HB, Cai WP, Li Y, Hu JI, Liu PS (2005) Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J Phys Chem B 109:18260–18266

    Article  CAS  Google Scholar 

  • Zhang Y, Xu J, Xiang Q, Li H, Pan Q, Xu P (2009) Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J Phys Chem C 113:3430–3435

    Article  CAS  Google Scholar 

  • Zhang J, Tu J-P, Xia X-H, Wang X-L, Gu C-D (2011) Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J Mater Chem 21:5492–5498

    Article  CAS  Google Scholar 

  • Zhang H, Wu R, Chen Z, Liu G, Zhang Z, Jiao Z (2012) Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties. CrystEngComm 14:1775–1782

    Article  CAS  Google Scholar 

  • Zhao FH, Zheng J-G, Yang XF, Li XY, Wang J, Zhao FL, Wong KS, Liang CL, Wu MM (2010) Complex ZnO nanotree arrays with tunable top, stem and branch structures. Nanoscale 2:1674–1683

    Article  CAS  Google Scholar 

  • Zou R, Zhang Z, Yu L, Tian Q, Chen Z, Hu J (2011) A general approach for the growth of metal oxide nanorod arrays on graphene sheets and their applications. Chem-Eur J 17:13912–13917

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of China (Nos. 20905021, 21175118, 21275130 and 21275131) and the Foundation of the Ministry of Education of China for Returned Scholars (A.J.W. and J.J.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, JJ., Wang, ZZ., Li, YF. et al. Control growth of single crystalline ZnO nanorod arrays and nanoflowers with enhanced photocatalytic activity. J Nanopart Res 15, 1565 (2013). https://doi.org/10.1007/s11051-013-1565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1565-x

Keywords

Navigation